Date Log
Copyright (c) 2020 Jurnal Ilmiah Perikanan dan Kelautan
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
1. Copyright of the article is transferred to the journal, by the knowledge of the author, whilst the moral right of the publication belongs to the author.
2. The legal formal aspect of journal publication accessibility refers to Creative Commons Atribusi-Non Commercial-Share alike (CC BY-NC-SA), (https://creativecommons.org/licenses/by-nc-sa/4.0/)
3. The articles published in the journal are open access and can be used for non-commercial purposes. Other than the aims mentioned above, the editorial board is not responsible for copyright violation
The manuscript authentic and copyright statement submission can be downloaded ON THIS FORM.
Development of Primary Cell Lines from Gill, Kidney, Spleen and Caudal Fin of Common Carp (Cyprinus carpio)
Corresponding Author(s) : Insariani Insariani
Jurnal Ilmiah Perikanan dan Kelautan, Vol. 12 No. 1 (2020): JURNAL ILMIAH PERIKANAN DAN KELAUTAN
Abstract
Highlihgt
- Develop primary cultures derived From tissue tails fins, gills, kidney and spleen from local Indonesian carp (Cyprinus carpio).
- Primary culture cell with L15 Media
- cell cultures consist of two type Fibroblast-like and epithelial –like cell
The fish cell lines technology have been developed for the interests of the fisheries world. This study aimed at developing a primary cell line from gill, kidney, spleen, and caudal fin of a common carp (Cyprinus carpio). A healthy common carp weighing 20 g (~1 month) was collected from the Cijeruk Fish Seed Center, Bogor. The development of primary cell lines from the gill, fin, tail, kidney and spleen tissue was performed in cell culture medium Leibovitz's L-15 supplemented with 20% serum fetal bovine, 250 IU Penicillin, 250 µg / ml kanamycin sulfate and 2Mm L-Glutamine, and incubated at 28°C. Primary cell lines of caudal fin and gill began to form a monolayer on day 17 after culture. While the development of cell lines from kidney and spleen, although the initiation of cells and cells spread on the surface into a monolayer, was not perfect; therefore, the passage was unable to be done. Microscopic observations and Giemsa staining showed primary cell lines of caudal fin and gill based on cell morphology consisted of two cell types, fibroblast-like cells and epithelial-like cells. The first passage was done on day 17 when the confluence was more than 50%. The next passage was carried out every 3 weeks when confluence reached 70% -80%. The primary cell culture of gill was successfully passaged as much as 72 and the caudal fin was successfully passed as much as 89 times over 7 years. These new cell lines can be further used to propagate fish viruses and other biotechnology assays.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Bois, N.C. (1991). Biotechnology and aquaculture: the role of cell cultures. Biotechnol. Advances, 9: 31-49.
- Bois, N. C. and Lee, l. E. J. (1991). Technology and uses of cell cultures from the tissues and organs of bony fish. Cytotechnolog,. 6: 163-187
- Bois, N. C., Brubacher, J. l., Ganassin, R.C. and Lee, l. E. (2001). Ecotoxicology and innate immunity in fish. Developmental & Comparative Imunology, 25: 853-873.
- Castano, A., Bois, N. C., Braunbeck, T., Dierickx, P., Halder, M., lsomaa, B., Kawahara, K., lee, l. E. J., Mothersill, C., Part, P., Repetto, G., Riego Sintes, J., Rufli, H., Smith, R., Wood, C. dan Segner, H. (2003). The use of fish cells in ecotoxicology.ATLA, 31:317-351.
- Clem, l. W., Bly, J. E., Wilson, M., Chinchar, V. G., Stuge, T., Barker, I., Luft, C., Rycyzyn, M., Hogan, R. J., Van lopik, T. dan Miller, N. W. (1996). Fish immunology: the utility of immortalized lymphoid cellsa mini review. Veterinary immunology and immunopathology, 54: 137-144.
- Fent, K. (2001). Fish cell lines as versatile tools in ecotoxicology: assessment of cytotoxicity, cytochrome P4501A induction potential and estrogenic activity of chemicals and environmental samples. Toxicology In Vitro,15: 477-488.
- Fernandez, R. D., Yoshimizu, M., Ezura, Y., dan Kimura, T. (1993). Comparative growth response of fish cell lines in different media, temperatures and sodium chloride concentrations. Gyobyo Kenkyu, 28 (1): 27-34.
- Freshney. R ian. (2005). Culture of Animal Clls : A Manual of Basic Technique, Fifth Edition. Johm Wiley & Sons, Inc
- Gibco Cell Culture Basics. (2012). Cell Morphology. http://www.invitrogen.com/site /us/en/home/References/gibco-cell-culture-basics/cell-morphology.html (12 Desember 2012).
- Hameed, S. S., Parameswaran, A. S., Shukla, V., Bright Singh, I. S., Thirunavukkarasu, A. R. dan Bhonde, R. R. (2006). Establishment and characterization of India's first marine fish cell line (SISK) from the kidney of sea bass (Lates calcarifer). Aquaculture, 257: 92-103.
- Hightower, l. E. dan Renfrow, J. l. (1988). Recent applications of fish cell culture to biomedical research. The Journal of Experimental Zoology. 248(3): 290-302.
- Juwono dan A. Z. Juniarto. 2000. Biologi sel. Penerbit Buku Kedokteran EGC. Jakarta. 1- 30.
- Kalamendra, W. S. lakra, J. Sharma, M. Goswami, dan B. S. Sharma. (2010). Development of Cell Culture From Caudan Fin and Heart of Tor Tor (Hamilton-Buchanan). Journal of Indian Fishery Association, 37: 37-43.
- Kumar, G. S., I.S. Bright Singh dan Rosamma Philip . (2001). Development of a cell culture system from the ovarian tissue of African catfish (Clarias gariepinus). Aquaculture, 194:51-32.
- Lai, Y. S., John, J. A. C., Un, C. H., Guo, I. C., Chen, S. C., Fang, IC, Un, C. H. dan Chang, C. Y. (2003). Establishment of cell lines from a tropical grouper, Epinephelus awoara (Temminck and Schlegel), and their susceptibility to grouper irido and nodaviruses. Journal of Fish Diseases, 26: 31-42.
- Lai, Y. S., Murali, S., Ju, H. Y., Wu, M. F., Guo, .I C., Chen, S. C., Fang, K. and Chang, C. Y. (2000). Two iridovirus-susceptible cell lines established from kidney and liver of grouper, Epinephelus awoara (Temminck & Schlegel), and partial characterization of grouper iridovirus. Journal of Fish Diseases, 23: 379-388.
- Lakra, W. S., Bhonde, R. R., Sivakumar, N. and Ayyappan, S. (2006). A new fibroblast like cell line from the fry of golden mahseer Tor putitora (Hamilton). Aquaculture, 253: 238-243
- Lakra Wazir S, M Goswami, T Rajaswaminathan, Gaurav Rathore. (2010). Development and characterization of two new cell lines from common carp, Cyprinus carpio (Linn). Biological Research, 43: 385-392.
- Langner S, S. Rakers, P. Ciba, A. E. Petschnik, D. H. Rapoport, C. Kruse. (2011). New cell line from adipopancreatic tissue of Atlantic herring Clupea harengus. Aquatic Biology Aquat Bio, (11): 271–278.
- Malole, M.B. (1990). Kultur sel dan jaringan hewan. Pusat Antar Universitas, IPB. Bogor, 327.
- Paul, J. (1972). Cell and Tissue culture. 4th ed. Edinburgh, Churchill Livingstone. 430.
- Phelan, C. M. (1998). Basic Technique for Mammalian Cell Tissue Culture. Current Protocols in Cell Biology, 1.1.1-1.1.10.
- Qin, Q. W., Wu, T. H., Jia, T. l., Hegde, A. and Zhang, R. Q. (2006). Development and characterization of a new tropical marine fish cell line from grouper, Epinephelus coioides susceptible to iridovirus and nodavirus. Journal of Virogical Methods, 131(1): 58-64.
- Schirmer, K. (2006). Proposal to improve vertebrate cell cultures to establish them as substitutes for the regulatory testing of chemicals and effluents using fish. Toxicology, 224: 163-183.
- Sumiati T, Lila Gardenia dan Agus Sunarto. (2009). Pembuatan Kultur Sel Primer dari Sirip Ekor Ikan Mas (Cyprinus carpio). Journal Riset Aquakultur, 4 (1): 107-116.
- Sugiri, N. 1992. Biologi sel vol 1. Pusat Antar Universitas. IPB. Bogor 203.
- Suprapto H dan Nunik Diantiwi. (2010). Kultur Sel Otak Ikan Kerapu Bebek (Cromileptes altivelis) Dengan Menggunakan Media L-15, MEM dan TCM. Jurnal Ilmiah Perikanan dan Kelautan, 2(2): 107-112.
- Tong, S. L., Miao, H. Z. and Li, H., 1998. Three new continuous fish cell lines of SPH, SPS and RSBF derived from sea perch (Lateolabraxjapaonicus) and red sea bream (Pagrosomus major). Aquaculture, 169:143-151.
- Villena, A. J., 2003. Applications and needs of fish and shellfish cell culture for disease control in aquaculture. Review in Fish Biology and Fisheries, (13): 111-140.
- Ye, H. Q., Chen, S. L., Sha, Z. X. and Xu, M. Y. (2006). Development and characterizationof cell lines from heart, liver, spleen and head kidney of sea perch, Lateolabrax japonicus. Journal of Fish Biology, 69 (Supplement A): 115-126.
References
Bois, N.C. (1991). Biotechnology and aquaculture: the role of cell cultures. Biotechnol. Advances, 9: 31-49.
Bois, N. C. and Lee, l. E. J. (1991). Technology and uses of cell cultures from the tissues and organs of bony fish. Cytotechnolog,. 6: 163-187
Bois, N. C., Brubacher, J. l., Ganassin, R.C. and Lee, l. E. (2001). Ecotoxicology and innate immunity in fish. Developmental & Comparative Imunology, 25: 853-873.
Castano, A., Bois, N. C., Braunbeck, T., Dierickx, P., Halder, M., lsomaa, B., Kawahara, K., lee, l. E. J., Mothersill, C., Part, P., Repetto, G., Riego Sintes, J., Rufli, H., Smith, R., Wood, C. dan Segner, H. (2003). The use of fish cells in ecotoxicology.ATLA, 31:317-351.
Clem, l. W., Bly, J. E., Wilson, M., Chinchar, V. G., Stuge, T., Barker, I., Luft, C., Rycyzyn, M., Hogan, R. J., Van lopik, T. dan Miller, N. W. (1996). Fish immunology: the utility of immortalized lymphoid cellsa mini review. Veterinary immunology and immunopathology, 54: 137-144.
Fent, K. (2001). Fish cell lines as versatile tools in ecotoxicology: assessment of cytotoxicity, cytochrome P4501A induction potential and estrogenic activity of chemicals and environmental samples. Toxicology In Vitro,15: 477-488.
Fernandez, R. D., Yoshimizu, M., Ezura, Y., dan Kimura, T. (1993). Comparative growth response of fish cell lines in different media, temperatures and sodium chloride concentrations. Gyobyo Kenkyu, 28 (1): 27-34.
Freshney. R ian. (2005). Culture of Animal Clls : A Manual of Basic Technique, Fifth Edition. Johm Wiley & Sons, Inc
Gibco Cell Culture Basics. (2012). Cell Morphology. http://www.invitrogen.com/site /us/en/home/References/gibco-cell-culture-basics/cell-morphology.html (12 Desember 2012).
Hameed, S. S., Parameswaran, A. S., Shukla, V., Bright Singh, I. S., Thirunavukkarasu, A. R. dan Bhonde, R. R. (2006). Establishment and characterization of India's first marine fish cell line (SISK) from the kidney of sea bass (Lates calcarifer). Aquaculture, 257: 92-103.
Hightower, l. E. dan Renfrow, J. l. (1988). Recent applications of fish cell culture to biomedical research. The Journal of Experimental Zoology. 248(3): 290-302.
Juwono dan A. Z. Juniarto. 2000. Biologi sel. Penerbit Buku Kedokteran EGC. Jakarta. 1- 30.
Kalamendra, W. S. lakra, J. Sharma, M. Goswami, dan B. S. Sharma. (2010). Development of Cell Culture From Caudan Fin and Heart of Tor Tor (Hamilton-Buchanan). Journal of Indian Fishery Association, 37: 37-43.
Kumar, G. S., I.S. Bright Singh dan Rosamma Philip . (2001). Development of a cell culture system from the ovarian tissue of African catfish (Clarias gariepinus). Aquaculture, 194:51-32.
Lai, Y. S., John, J. A. C., Un, C. H., Guo, I. C., Chen, S. C., Fang, IC, Un, C. H. dan Chang, C. Y. (2003). Establishment of cell lines from a tropical grouper, Epinephelus awoara (Temminck and Schlegel), and their susceptibility to grouper irido and nodaviruses. Journal of Fish Diseases, 26: 31-42.
Lai, Y. S., Murali, S., Ju, H. Y., Wu, M. F., Guo, .I C., Chen, S. C., Fang, K. and Chang, C. Y. (2000). Two iridovirus-susceptible cell lines established from kidney and liver of grouper, Epinephelus awoara (Temminck & Schlegel), and partial characterization of grouper iridovirus. Journal of Fish Diseases, 23: 379-388.
Lakra, W. S., Bhonde, R. R., Sivakumar, N. and Ayyappan, S. (2006). A new fibroblast like cell line from the fry of golden mahseer Tor putitora (Hamilton). Aquaculture, 253: 238-243
Lakra Wazir S, M Goswami, T Rajaswaminathan, Gaurav Rathore. (2010). Development and characterization of two new cell lines from common carp, Cyprinus carpio (Linn). Biological Research, 43: 385-392.
Langner S, S. Rakers, P. Ciba, A. E. Petschnik, D. H. Rapoport, C. Kruse. (2011). New cell line from adipopancreatic tissue of Atlantic herring Clupea harengus. Aquatic Biology Aquat Bio, (11): 271–278.
Malole, M.B. (1990). Kultur sel dan jaringan hewan. Pusat Antar Universitas, IPB. Bogor, 327.
Paul, J. (1972). Cell and Tissue culture. 4th ed. Edinburgh, Churchill Livingstone. 430.
Phelan, C. M. (1998). Basic Technique for Mammalian Cell Tissue Culture. Current Protocols in Cell Biology, 1.1.1-1.1.10.
Qin, Q. W., Wu, T. H., Jia, T. l., Hegde, A. and Zhang, R. Q. (2006). Development and characterization of a new tropical marine fish cell line from grouper, Epinephelus coioides susceptible to iridovirus and nodavirus. Journal of Virogical Methods, 131(1): 58-64.
Schirmer, K. (2006). Proposal to improve vertebrate cell cultures to establish them as substitutes for the regulatory testing of chemicals and effluents using fish. Toxicology, 224: 163-183.
Sumiati T, Lila Gardenia dan Agus Sunarto. (2009). Pembuatan Kultur Sel Primer dari Sirip Ekor Ikan Mas (Cyprinus carpio). Journal Riset Aquakultur, 4 (1): 107-116.
Sugiri, N. 1992. Biologi sel vol 1. Pusat Antar Universitas. IPB. Bogor 203.
Suprapto H dan Nunik Diantiwi. (2010). Kultur Sel Otak Ikan Kerapu Bebek (Cromileptes altivelis) Dengan Menggunakan Media L-15, MEM dan TCM. Jurnal Ilmiah Perikanan dan Kelautan, 2(2): 107-112.
Tong, S. L., Miao, H. Z. and Li, H., 1998. Three new continuous fish cell lines of SPH, SPS and RSBF derived from sea perch (Lateolabraxjapaonicus) and red sea bream (Pagrosomus major). Aquaculture, 169:143-151.
Villena, A. J., 2003. Applications and needs of fish and shellfish cell culture for disease control in aquaculture. Review in Fish Biology and Fisheries, (13): 111-140.
Ye, H. Q., Chen, S. L., Sha, Z. X. and Xu, M. Y. (2006). Development and characterizationof cell lines from heart, liver, spleen and head kidney of sea perch, Lateolabrax japonicus. Journal of Fish Biology, 69 (Supplement A): 115-126.