Date Log
Copyright (c) 2022 Jurnal Ilmiah Perikanan dan Kelautan
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
1. Copyright of the article is transferred to the journal, by the knowledge of the author, whilst the moral right of the publication belongs to the author.
2. The legal formal aspect of journal publication accessibility refers to Creative Commons Atribusi-Non Commercial-Share alike (CC BY-NC-SA), (https://creativecommons.org/licenses/by-nc-sa/4.0/)
3. The articles published in the journal are open access and can be used for non-commercial purposes. Other than the aims mentioned above, the editorial board is not responsible for copyright violation
The manuscript authentic and copyright statement submission can be downloaded ON THIS FORM.
The Optimization of Sulphide Oxidizing Bacteria (SOB) for Oil Corrosivity Reduction at Indramayu Coast, The Northern Coastal Area of West Java
Corresponding Author(s) : Yudi Nurul Ihsan
Jurnal Ilmiah Perikanan dan Kelautan, Vol. 14 No. 2 (2022): JURNAL ILMIAH PERIKANAN DAN KELAUTAN
Abstract
Highlight Research
- First NR-SOB from Indramayu coast was successfully isolated and identified.
- Bactrerial characterization morphologically and biochemically, foster with in situ hybridization confirm the isolate was Thiobacillus denitrificans, and Arcobacter sp.
- Both isolate, Thiobacillus denitrificans and Arcobacter sp., were able to grow in sulphide rich environment in the presence of essential nutrient
- Thiobacillus denitrificans and Arcobacter sp. exhibit an outstanding sulphide oxidation ability up to 100% in the presence of nitrate.
Abstract
Crude oil production triggers the formation of hydrogen sulphide, also known as souring, which is extremely toxic and corrosive to the environment. It additionally give an adverse consequence to aquatic, terrestrial, and human existence. Studies of hydrogen sulphide reduction in sediments polluted by crude oil have been carried out recently to investigate the capability of indigenous Nitrate-Reducing Sulphide Oxidising Bacteria, hereinafter referred to as NR-SOB, as bioremediation agents. The experiments utilised hydrogen sulphide with 200 µM concentration combined with NO3 with different concentrations of 100 µM, 200 µM, and 300 µM. Measurements of the hydrogen sulfide concentrations were observed up to 48 hours within the experimental period. The SOB used in this study were taken from Balongan Bay at Indramayu coast using Nansen bottle to carry out water sample. The sulphide-oxidising ability of SOB was then evaluated at room temperature in control environment. Methylene blue method was applied to monitor the sulphide concentration. The results showed a complete removal of hydrogen sulphide concentrations in 48 hours accompanied with gradual drops of nitrate in all experiment series. Sulphide oxidation rate was detected to appear between 6.8 and 10.2 fmol/cell/hour. Measurements of cell abundance after 48 hours showed 6.2 x 105, 7.5 X 105, and 8.2 X 105 cell/ml from Experiments I, II, and III respectively. Using MSS selective medium, the bacteria were identified as Thiobacillus denitrificans and Arcobacter sp. Overall, the isolated NR-SOB from the coast of Balongan Bay, Indramayu proves to be a promising candidate for sulphide controls and mitigation.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Austigard, í…. D., Svendsen, K., & Heldal, K. K. (2018). Hydrogen sulphide exposure in waste water treatment. Journal of Occupational Medicine and Toxicology, 13(1):1-10.
- Basafa, M., & Hawboldt, K. (2019). Reservoir souring: sulfur chemistry in offshore oil and gas reservoir fluids. Journal of Petroleum Exploration and Production Technology, 9(2):1105-1118.
- Cai, M. H., Luo, G., Li, J., Li, W. T., Li, Y., & Li, A. M. (2021). Substrate competition and microbial function in sulfate-reducing internal circulation anaerobic reactor in the presence of nitrate. Chemosphere, 280:130937.
- Callbeck, C. M., Pelzer, C., Lavik, G., Ferdelman, T. G., Graf, J. S., Vekeman, B., Schunck, H., Littmann, S., Fuchs, B. M., Hach, P. F., Kalvelage, T., Schmitz, R. A., & Kuypers, M. M. M. (2019). Arcobacter peruensis sp. nov., a chemolithoheterotroph isolated from sulfide-and organic-rich coastal waters off Peru. Applied and Environmental Microbiology, 85(24):1-17.
- Cúcio, C., Overmars, L., Engelen, A. H., & Muyzer, G. (2018). Metagenomic analysis shows the presence of bacteria related to free-living forms of sulfur-oxidizing chemolithoautotrophic symbionts in the rhizosphere of the seagrass Zostera marina. Frontiers in Marine Science, 5(171):1-15.
- Cui, Y. X., Biswal, B. K., Guo, G., Deng, Y. F., Huang, H., Chen, G. H., & Wu, D. (2019). Biological nitrogen removal from wastewater using sulphur-driven autotrophic denitrification. Applied Microbiology and Biotechnology, 103(15):6023-6039.
- Currie, B., Utne-Palm, A. C., & Vea Salvanes, A. G. (2018). Winning ways with hydrogen sulphide on the Namibian shelf. Frontiers in Marine Science, 5(341):1-9.
- De Anda, V., Zapata-Peñasco, I., Eguiarte, L. E., & Souza, V. (2018). The Sulfur Cycle as the Gear of the "Clock of Life”: The Point of Convergence Between Geological and Genomic Data in the Cuatro Cienegas Basin. In F. Garcia-Olivia, J. Elser, and V. Souza (Eds.), Ecosystem Ecology and Geochemistry of Cuatro Cienegas. (pp. 67-83). New York: Springer.
- Dolfing, J., & Hubert, C. R. J. (2017). Using thermodynamics to predict the outcomes of nitrate-based oil reservoir souring control interventions. Frontiers in Microbiology, 8(2575):1-9.
- Fan, F., Zhang, B., Liu, J., Cai, Q., Lin, W., & Chen, B. (2020). Towards sulfide removal and sulfate reducing bacteria inhibition: Function of biosurfactants produced by indigenous isolated nitrate reducing bacteria. Chemosphere, 238:124655.
- Fida, T. T., Sharma, M., Shen, Y., & Voordouw, G. (2021). Microbial sulfite oxidation coupled to nitrate reduction in makeup water for oil production. Chemosphere, 284:131298.
- Findlay, A. J., Pellerin, A., Laufer, K., & Jí¸rgensen, B. B. (2020). Quantification of sulphide oxidation rates in marine sediment. Geochimica et Cosmochimica Acta, 280:441-452.
- Grabarczyk, D. B., & Berks, B. C. (2017). Intermediates in the Sox sulfur oxidation pathway are bound to a sulfane conjugate of the carrier protein SoxYZ. PLoS ONE, 12(3):1-15.
- Greene, E. A., Hubert, C., Nemati, M., Jenneman, G. E., & Voordouw, G. (2003). Nitrite reductase activity of sulphate-reducing bacteria prevents their inhibition by nitrate-reducing, sulphide-oxidizing bacteria. Environmental Microbiology, 5(7):607-617.
- Guerrero-Cruz, S., Vaksmaa, A., Horn, M. A., Niemann, H., Pijuan, M., & Ho, A. (2021). Methanotrophs: Discoveries, environmental relevance, and a perspective on current and future applications. Frontiers in Microbiology, 12(678057):1-28.
- Gupta, R. K., Poddar, B. J., Nakhate, S. P., Chavan, A. R., Singh, A. K., Purohit, H. J., & Khardenavis, A. A. (2022). Role of heterotrophic nitrifiers and aerobic denitrifiers in simultaneous nitrification and denitrification process: a nonconventional nitrogen removal pathway in wastewater treatment. Letters in Applied Microbiology, 74(2):159-184.
- Hu, M., & Wu, W. (2021). Fluorescence in situ hybridization. In Clinical Molecular Diagnostics (pp. 405-411). Singapore: Springer.
- Jí¸rgensen, B. B., Findlay, A. J., & Pellerin, A. (2019). The biogeochemical sulfur cycle of marine sediments. Frontiers in Microbiology, 10(849):1-10.
- Kamarisima, Hidaka, K., Miyanaga, K., & Tanji, Y. (2018). The presence of nitrate- and sulfate-reducing bacteria contributes to ineffectiveness souring control by nitrate injection. International Biodeterioration and Biodegradation, 129:81-88.
- Kiragosyan, K., Klok, J. B. M., Keesman, K. J., Roman, P., & Janssen, A. J. H. (2019). Development and validation of a physiologically based kinetic model for starting up and operation of the biological gas desulfurization process under haloalkaline conditions. Water Research, X(4):100035.
- Kumar, N. R., Archana, K., Basha, K., Muthulakshmi, T., Joseph, T., & Prasad, M. (2018). Isolation and Identification of Sulphur Oxidizing Bacteria from Freshwater Fish Farm Soil. Fishery Technology, 55:270-275.
- Lahme, S., Enning, D., Callbeck, C. M., Vega, M., Curtis, T. P., Head, I. M., & Hubert, C. R. J. (2019). Metabolites of an oil field sulfide-oxidizing, nitrate-reducing Sulfurimonas sp. cause severe corrosion. Applied and Environmental Microbiology, 85(3):e01891-18.
- Liu, Z. hua, Yin, H., Lin, Z., & Dang, Z. (2018). Sulfate-reducing bacteria in anaerobic bioprocesses: basic properties of pure isolates, molecular quantification, and controlling strategies. Environmental Technology Reviews, 7(1):46-72.
- Mangiapia, M., Brown, T. R., Chaput, D., Haller, E., Luke, T. H., Hashemy, Z., Keeley, R., Leonard, J., Mancera, P., Nicholson, D., Stevens, S. M., Wanjugi, P., Zabinski, T., Pan, C., & Scott, K. M. (2017). Proteomic and mutant analysis of the CO2 concentrating mechanism of hydrothermal vent chemolithoautotroph thiomicrospira crunogena. Journal of Bacteriology, 199(7):e00871-16.
- Mino, S., & Nakagawa, S. (2018). Deep-sea vent extremophiles: cultivation, physiological characteristics, and ecological significance. In R. Durvasula and D. V. Subba Rao (1st Ed.), Extremophiles. (pp. 165-184). Florida: CRC Press.
- Nemati, M., Jenneman, G. E., & Voordouw, G. (2001). Mechanistic study of microbial control of hydrogen sulfide production in oil reservoirs. Biotechnology and Bioengineering, 74(5):424-434.
- Patwardhan, S., Foustoukos, D. I., Giovannelli, D., Yücel, M., & Vetriani, C. (2018). Ecological succession of sulfur-oxidizing epsilon- And gammaproteobacteria during colonization of a shallow-water gas vent. Frontiers in Microbiology, 9(2970):1-16.
- Rubio-Rincón, F., Lopez-Vazquez, C., Welles, L., van den Brand, T., Abbas, B., van Loosdrecht, M., & Brdjanovic, D. (2017). Effects of electron acceptors on sulphate reduction activity in activated sludge processes. Applied Microbiology and Biotechnology, 101(15):6229-6240.
- Studt, J. L., Campbell, E. R., Westrick, D., Kinnunen-Skidmore, T., Marceau, A. H., & Campbell, W. H. (2020). Non-toxic total nitrogen determination using a low alkaline persulfate digestion. MethodsX, 7:100791.
- Sun, Z., Pang, B., Xi, J., & Hu, H. Y. (2019). Screening and characterization of mixotrophic sulfide oxidizing bacteria for odorous surface water bioremediation. Bioresource Technology, 290:121721.
- Vaithiyanathan, S., Chandrasekaran, K., & Barik, R. C. (2018). Green biocide for mitigating sulfate-reducing bacteria influenced microbial corrosion. 3 Biotech, 8(12):1-11.
- Veshareh, M. J., Kjeldsen, K. U., Findlay, A. J., Nick, H. M., Rí¸y, H., & Marietou, A. (2021). Nitrite is a more efficient inhibitor of microbial sulfate reduction in oil reservoirs compared to nitrate and perchlorate: A laboratory and field-scale simulation study. International Biodeterioration and Biodegradation, 157:105154.
- Wang, T., Huang, Y., Xu, J., Guo, W., & Yuan, D. (2021). Development and application of a shipboard method for spectrophotometric determination of nanomolar dissolved sulfide in estuarine surface waters using reverse flow injection analysis coupled with a long path length liquid waveguide capillary cell. Microchemical Journal, 168:106522.
- Wang, Y., Zhou, S., Liu, T., Chen, M., Li, W., & Zhang, X. (2019). The transcriptomic responses of the ark shell, Anadara broughtonii, to sulfide and hypoxia exposure. Molecular Biology Reports, 46(4):4245-4257.
- Watsuntorn, W., Ruangchainikom, C., Rene, E. R., Lens, P. N. L., & Chulalaksananukul, W. (2017). Hydrogen sulfide oxidation under anoxic conditions by a nitrate-reducing, sulfide-oxidizing bacterium isolated from the Mae Um Long Luang hot spring, Thailand. International Biodeterioration and Biodegradation, 124:196-205.
- Wu, B., Liu, F., Fang, W., Yang, T., Chen, G. H., He, Z., & Wang, S. (2021). Microbial sulfur metabolism and environmental implications. Science of the Total Environment, 778:146085.
- Yamamoto, M., & Takai, K. (2011). Sulfur metabolisms in epsilon-and gamma-proteobacteria in deep-sea hydrothermal fields. Frontiers in Microbiology, 2(192):1-8.
- Zaib, M., Malik, T., Akhtar, N., & Shahzadi, T. (2022). Sensitive detection of Sulphide Ions using green synthesized monometallic and bimetallic nanoparticles: comparative study. Waste and Biomass Valorization, 13:2447-2459.
- Zhang, R. C., Chen, C., Shao, B., Wang, W., Xu, X. J., Zhou, X., Xiang, Y. N., Zhao, L., Lee, D. J., & Ren, N. Q. (2020). Heterotrophic sulfide-oxidizing nitrate-reducing bacteria enables the high performance of integrated autotrophic-heterotrophic denitrification (IAHD) process under high sulfide loading. Water Research, 178:115848.
References
Austigard, í…. D., Svendsen, K., & Heldal, K. K. (2018). Hydrogen sulphide exposure in waste water treatment. Journal of Occupational Medicine and Toxicology, 13(1):1-10.
Basafa, M., & Hawboldt, K. (2019). Reservoir souring: sulfur chemistry in offshore oil and gas reservoir fluids. Journal of Petroleum Exploration and Production Technology, 9(2):1105-1118.
Cai, M. H., Luo, G., Li, J., Li, W. T., Li, Y., & Li, A. M. (2021). Substrate competition and microbial function in sulfate-reducing internal circulation anaerobic reactor in the presence of nitrate. Chemosphere, 280:130937.
Callbeck, C. M., Pelzer, C., Lavik, G., Ferdelman, T. G., Graf, J. S., Vekeman, B., Schunck, H., Littmann, S., Fuchs, B. M., Hach, P. F., Kalvelage, T., Schmitz, R. A., & Kuypers, M. M. M. (2019). Arcobacter peruensis sp. nov., a chemolithoheterotroph isolated from sulfide-and organic-rich coastal waters off Peru. Applied and Environmental Microbiology, 85(24):1-17.
Cúcio, C., Overmars, L., Engelen, A. H., & Muyzer, G. (2018). Metagenomic analysis shows the presence of bacteria related to free-living forms of sulfur-oxidizing chemolithoautotrophic symbionts in the rhizosphere of the seagrass Zostera marina. Frontiers in Marine Science, 5(171):1-15.
Cui, Y. X., Biswal, B. K., Guo, G., Deng, Y. F., Huang, H., Chen, G. H., & Wu, D. (2019). Biological nitrogen removal from wastewater using sulphur-driven autotrophic denitrification. Applied Microbiology and Biotechnology, 103(15):6023-6039.
Currie, B., Utne-Palm, A. C., & Vea Salvanes, A. G. (2018). Winning ways with hydrogen sulphide on the Namibian shelf. Frontiers in Marine Science, 5(341):1-9.
De Anda, V., Zapata-Peñasco, I., Eguiarte, L. E., & Souza, V. (2018). The Sulfur Cycle as the Gear of the "Clock of Life”: The Point of Convergence Between Geological and Genomic Data in the Cuatro Cienegas Basin. In F. Garcia-Olivia, J. Elser, and V. Souza (Eds.), Ecosystem Ecology and Geochemistry of Cuatro Cienegas. (pp. 67-83). New York: Springer.
Dolfing, J., & Hubert, C. R. J. (2017). Using thermodynamics to predict the outcomes of nitrate-based oil reservoir souring control interventions. Frontiers in Microbiology, 8(2575):1-9.
Fan, F., Zhang, B., Liu, J., Cai, Q., Lin, W., & Chen, B. (2020). Towards sulfide removal and sulfate reducing bacteria inhibition: Function of biosurfactants produced by indigenous isolated nitrate reducing bacteria. Chemosphere, 238:124655.
Fida, T. T., Sharma, M., Shen, Y., & Voordouw, G. (2021). Microbial sulfite oxidation coupled to nitrate reduction in makeup water for oil production. Chemosphere, 284:131298.
Findlay, A. J., Pellerin, A., Laufer, K., & Jí¸rgensen, B. B. (2020). Quantification of sulphide oxidation rates in marine sediment. Geochimica et Cosmochimica Acta, 280:441-452.
Grabarczyk, D. B., & Berks, B. C. (2017). Intermediates in the Sox sulfur oxidation pathway are bound to a sulfane conjugate of the carrier protein SoxYZ. PLoS ONE, 12(3):1-15.
Greene, E. A., Hubert, C., Nemati, M., Jenneman, G. E., & Voordouw, G. (2003). Nitrite reductase activity of sulphate-reducing bacteria prevents their inhibition by nitrate-reducing, sulphide-oxidizing bacteria. Environmental Microbiology, 5(7):607-617.
Guerrero-Cruz, S., Vaksmaa, A., Horn, M. A., Niemann, H., Pijuan, M., & Ho, A. (2021). Methanotrophs: Discoveries, environmental relevance, and a perspective on current and future applications. Frontiers in Microbiology, 12(678057):1-28.
Gupta, R. K., Poddar, B. J., Nakhate, S. P., Chavan, A. R., Singh, A. K., Purohit, H. J., & Khardenavis, A. A. (2022). Role of heterotrophic nitrifiers and aerobic denitrifiers in simultaneous nitrification and denitrification process: a nonconventional nitrogen removal pathway in wastewater treatment. Letters in Applied Microbiology, 74(2):159-184.
Hu, M., & Wu, W. (2021). Fluorescence in situ hybridization. In Clinical Molecular Diagnostics (pp. 405-411). Singapore: Springer.
Jí¸rgensen, B. B., Findlay, A. J., & Pellerin, A. (2019). The biogeochemical sulfur cycle of marine sediments. Frontiers in Microbiology, 10(849):1-10.
Kamarisima, Hidaka, K., Miyanaga, K., & Tanji, Y. (2018). The presence of nitrate- and sulfate-reducing bacteria contributes to ineffectiveness souring control by nitrate injection. International Biodeterioration and Biodegradation, 129:81-88.
Kiragosyan, K., Klok, J. B. M., Keesman, K. J., Roman, P., & Janssen, A. J. H. (2019). Development and validation of a physiologically based kinetic model for starting up and operation of the biological gas desulfurization process under haloalkaline conditions. Water Research, X(4):100035.
Kumar, N. R., Archana, K., Basha, K., Muthulakshmi, T., Joseph, T., & Prasad, M. (2018). Isolation and Identification of Sulphur Oxidizing Bacteria from Freshwater Fish Farm Soil. Fishery Technology, 55:270-275.
Lahme, S., Enning, D., Callbeck, C. M., Vega, M., Curtis, T. P., Head, I. M., & Hubert, C. R. J. (2019). Metabolites of an oil field sulfide-oxidizing, nitrate-reducing Sulfurimonas sp. cause severe corrosion. Applied and Environmental Microbiology, 85(3):e01891-18.
Liu, Z. hua, Yin, H., Lin, Z., & Dang, Z. (2018). Sulfate-reducing bacteria in anaerobic bioprocesses: basic properties of pure isolates, molecular quantification, and controlling strategies. Environmental Technology Reviews, 7(1):46-72.
Mangiapia, M., Brown, T. R., Chaput, D., Haller, E., Luke, T. H., Hashemy, Z., Keeley, R., Leonard, J., Mancera, P., Nicholson, D., Stevens, S. M., Wanjugi, P., Zabinski, T., Pan, C., & Scott, K. M. (2017). Proteomic and mutant analysis of the CO2 concentrating mechanism of hydrothermal vent chemolithoautotroph thiomicrospira crunogena. Journal of Bacteriology, 199(7):e00871-16.
Mino, S., & Nakagawa, S. (2018). Deep-sea vent extremophiles: cultivation, physiological characteristics, and ecological significance. In R. Durvasula and D. V. Subba Rao (1st Ed.), Extremophiles. (pp. 165-184). Florida: CRC Press.
Nemati, M., Jenneman, G. E., & Voordouw, G. (2001). Mechanistic study of microbial control of hydrogen sulfide production in oil reservoirs. Biotechnology and Bioengineering, 74(5):424-434.
Patwardhan, S., Foustoukos, D. I., Giovannelli, D., Yücel, M., & Vetriani, C. (2018). Ecological succession of sulfur-oxidizing epsilon- And gammaproteobacteria during colonization of a shallow-water gas vent. Frontiers in Microbiology, 9(2970):1-16.
Rubio-Rincón, F., Lopez-Vazquez, C., Welles, L., van den Brand, T., Abbas, B., van Loosdrecht, M., & Brdjanovic, D. (2017). Effects of electron acceptors on sulphate reduction activity in activated sludge processes. Applied Microbiology and Biotechnology, 101(15):6229-6240.
Studt, J. L., Campbell, E. R., Westrick, D., Kinnunen-Skidmore, T., Marceau, A. H., & Campbell, W. H. (2020). Non-toxic total nitrogen determination using a low alkaline persulfate digestion. MethodsX, 7:100791.
Sun, Z., Pang, B., Xi, J., & Hu, H. Y. (2019). Screening and characterization of mixotrophic sulfide oxidizing bacteria for odorous surface water bioremediation. Bioresource Technology, 290:121721.
Vaithiyanathan, S., Chandrasekaran, K., & Barik, R. C. (2018). Green biocide for mitigating sulfate-reducing bacteria influenced microbial corrosion. 3 Biotech, 8(12):1-11.
Veshareh, M. J., Kjeldsen, K. U., Findlay, A. J., Nick, H. M., Rí¸y, H., & Marietou, A. (2021). Nitrite is a more efficient inhibitor of microbial sulfate reduction in oil reservoirs compared to nitrate and perchlorate: A laboratory and field-scale simulation study. International Biodeterioration and Biodegradation, 157:105154.
Wang, T., Huang, Y., Xu, J., Guo, W., & Yuan, D. (2021). Development and application of a shipboard method for spectrophotometric determination of nanomolar dissolved sulfide in estuarine surface waters using reverse flow injection analysis coupled with a long path length liquid waveguide capillary cell. Microchemical Journal, 168:106522.
Wang, Y., Zhou, S., Liu, T., Chen, M., Li, W., & Zhang, X. (2019). The transcriptomic responses of the ark shell, Anadara broughtonii, to sulfide and hypoxia exposure. Molecular Biology Reports, 46(4):4245-4257.
Watsuntorn, W., Ruangchainikom, C., Rene, E. R., Lens, P. N. L., & Chulalaksananukul, W. (2017). Hydrogen sulfide oxidation under anoxic conditions by a nitrate-reducing, sulfide-oxidizing bacterium isolated from the Mae Um Long Luang hot spring, Thailand. International Biodeterioration and Biodegradation, 124:196-205.
Wu, B., Liu, F., Fang, W., Yang, T., Chen, G. H., He, Z., & Wang, S. (2021). Microbial sulfur metabolism and environmental implications. Science of the Total Environment, 778:146085.
Yamamoto, M., & Takai, K. (2011). Sulfur metabolisms in epsilon-and gamma-proteobacteria in deep-sea hydrothermal fields. Frontiers in Microbiology, 2(192):1-8.
Zaib, M., Malik, T., Akhtar, N., & Shahzadi, T. (2022). Sensitive detection of Sulphide Ions using green synthesized monometallic and bimetallic nanoparticles: comparative study. Waste and Biomass Valorization, 13:2447-2459.
Zhang, R. C., Chen, C., Shao, B., Wang, W., Xu, X. J., Zhou, X., Xiang, Y. N., Zhao, L., Lee, D. J., & Ren, N. Q. (2020). Heterotrophic sulfide-oxidizing nitrate-reducing bacteria enables the high performance of integrated autotrophic-heterotrophic denitrification (IAHD) process under high sulfide loading. Water Research, 178:115848.