Date Log
Copyright (c) 2022 Jurnal Ilmiah Perikanan dan Kelautan
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
1. Copyright of the article is transferred to the journal, by the knowledge of the author, whilst the moral right of the publication belongs to the author.
2. The legal formal aspect of journal publication accessibility refers to Creative Commons Atribusi-Non Commercial-Share alike (CC BY-NC-SA), (https://creativecommons.org/licenses/by-nc-sa/4.0/)
3. The articles published in the journal are open access and can be used for non-commercial purposes. Other than the aims mentioned above, the editorial board is not responsible for copyright violation
The manuscript authentic and copyright statement submission can be downloaded ON THIS FORM.
Autoclaving and Alkaline Hydrolysis Effects on the Particle Size and Solubility of Grouper (Epinephelus sp.) Nano-calcium Powder in In Vitro Gastrointestinal Tract Simulation
Corresponding Author(s) : Yudi Pranoto
Jurnal Ilmiah Perikanan dan Kelautan, Vol. 14 No. 2 (2022): JURNAL ILMIAH PERIKANAN DAN KELAUTAN
Abstract
Highlight Research
- Autoclaving for 3x3 hours followed by alkaline hydrolysis (3x3AH) may lower nano-calcium particle size into 47.47 nm
- 3x3AH sample contain 30.73% calcium and 18.37% phosphorus
- 3x3AH sample created the best calcium solubility (26.14 %) in comparison to synthesized CaCO3 (14.34 %)
- Grouper nano-calcium powder includes trace quantities of organic content, such as protein and fat, which enhance calcium's solubility.
Abstract
Fish bone nano-calcium production may solve two challenges, providing calcium for lactose-intolerant people and recycling bone waste. Fish bone autoclaving prior to extraction reduces fat, denatures collagen, and softens bones but only few researches have compared autoclaving duration with nano-calcium product quality, particle size, and its solubility in in vitro testing. This study studied the influence of autoclaving duration followed by alkaline hydrolysis on nano-calcium characteristics to enhance calcium solubility in in vitro gastrointestinal simulation experiments. The dried grouper (Epinephelus sp.) bone was divided into four groups: 0A (no autoclaving), 3A (3 h autoclaving), 2x3A (double cycle for 3 h autoclaving), and 3x3A (triple cycle for 3 h autoclaving). Each group was followed by alkaline hydrolysis, designated as 0AH, 3AH, 2x3AH, and 3x3AH. The results showed that autoclaving for 3x3 hours followed by alkaline hydrolysis resulted in lowest nano-calcium particle size of 47.47 nm consisting of 30.73% calcium and 18.37% phosphorous. 3x3AH sample created the best calcium solubility (26.14%) in comparison to synthesized CaCO3 (14.34%). In contrast to synthetic CaCO3, grouper nano-calcium powder includes trace quantities of organic contents, such as protein and fat, which enhance calcium solubility. In vivo research should be established to study the bioavailability and influence of grouper nano-calcium powder on bone density.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Abdullah, A., & Mohammed, A. (2019). Scanning electron microscopy (SEM): A review. Paper presented at the Proceedings of 2018 International Conference on Hydraulics Pneumatics – HERVEX, Băile Govora, Romania.
- Abid, N., Khan, A. M., Shujait, S., Chaudhary, K., Ikram, M., Imran, M., Haider, J., Khan, M., Khan, Q., & Maqbool, M. (2022). Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: A review. Advances in Colloid and Interface Science, 300:102597.
- Acar, S., Demir, K., & Shi, Y. (2017). Genetic causes of rickets. Journal of Clinical Research in Pediatric Endocrinology, 9(2):88-105.
- Alegría, A., Garcia-Llatas, G., & Cilla, A. (2015). Static digestion models: General introduction. In K. Verhoeckx, P. Cotter, I. López-Expósito, C. Kleiveland, T. Lea, & A. Mackie (Ed.), The impact of food bioactives on health: In vitro and ex vivo models. (pp. 3–12). New York: Springer International Publishing.
- Al-Timimi, Z., & Tammemi, Z. J. (2022). Polymer Blends and nanocomposite materials based on Polymethyl Methacrylate (PMMA) for bone regeneration and repair. Journal of Sustainable Materials Processing and Management, 2(1):15-23.
- Ali, M., Kusnadi, J., Aulanni'am, A., & Yunianta, Y. (2020). Amino acids, fatty acids and volatile compounds of Terasi Udang, an Indonesian shrimp paste, during fermentation. AACL Bioflux, 13(2):938-50.
- Amitha, Raju, C. V., Lakshmisha, I. P., Kumar, P. A., Sarojini, A., Endra, G., & Pal, J. (2019). Nutritional composition of fish bone powder extracted from three different fish filleting waste boiling with water and an alkaline media. International Journal of Current Microbiology and Applied Sciences, 8(02):2942-2948.
- Anggraeni, N. (2019). Bioavailabilitas nanokalsium hasil ekstraksi tulang ikan nila (Oreochromis niloticus) dengan variasi konsentasi pelarut basa dan lama ekstraksi. Thesis. Yogyakarta: Universitas Gadjah Mada.
- Bandali, E., Wang, Y., Rogers, M., & Shapses, S. (2018). The influence of dietary fat and intestinal pH on calcium bioaccessibility: an in vitro study. Food and Function, 9(3):1809-1815.
- Bas, M., Daglilar, S., Kuskonmaz, N., Kalkandelen, C., Erdemir, G., Kuruca, S. E., Tulyaganov, D., Yoshioka, T., Gunduz, O., Ficai, D., & Ficai, A. (2020). Mechanical and biocompatibility properties of calcium phosphate bioceramics derived from salmon fish bone wastes. International Journal of Molecular Sciences, 21(21):1-14.
- Benjakul, S., Mad-Ali, S., Senphan, T., & Sookchoo, P. (2018). Characteristics of biocalcium from pre-cooked skipjack tuna bone as affected by different treatments. Waste and Biomass Valorization, 9(8):1369-1377.
- Benjakul, S., Mad-Ali, S., & Sookchoo, P. (2017). Characteristics of biocalcium powders from pre-cooked tongol (Thunnus tonggol) and yellowfin (Thunnus albacores) tuna bones. Food Biophysics, 12(4):412-421.
- Biazar, E., Joupari, M. D., Keshel, S. H., Amirhosein, D. N., Kamalvand, M., Sahebalzamani, M., Roniyan, R., Shabankhah, M., & Farajpour, F. (2020). Characterization and biocompatibility of hydroxyapatite nanoparticles extracted from fish bone. Bioengineering Research, 2(2):10-19.
- Cormick, G., & Belizán, J. M. (2019). Calcium intake and health. Nutrients, 11(7):1-16.
- Corríªa, T. H. A., & Holanda, J. N. F. (2019). Fish bone as a source of raw material for synthesis of calcium phosphate. Materials Research, 22:1-5.
- Dewiasty, E., Setiati, S., Agustina, R., Roosheroe, A. G., Abdullah, M., Istanti, R., & de Groot, L. C. (2021). Prevalence of lactose intolerance and nutrients intake in an older population regarded as lactase non-persistent. Clinical Nutrition ESPEN, 43(1):317-321.
- Estiasih, T., & Ahmadi, K. (2012). Pembuatan trigliserida kaya asam lemak ω-3 dari minyak hasil samping pengalengan ikan lemuru (Sardinella longiceps). Jurnal Teknologi Pertanian, 5(3):116-128.
- Hemung, B. O. (2013). Properties of tilapia bone powder and its calcium bioavailability based on transglutaminase assay. International Journal of Bioscience, Biochemistry and Bioinformatics, 3(4):306-309.
- Hodges, J. K., Cao, S., Cladis, D. P., & Weaver, C. M. (2019). Lactose intolerance and bone health: The challenge of ensuring adequate calcium intake. Nutrients, 11(718):1-17
- Husna, A., Handayani, L., & Syahputra, F. (2020). Pemanfaatan tulang ikan kambing-kambing (Abalistes stellaris) sebagai sumber kalsium pada produk tepung tulang ikan. Acta Aquatica: Aquatic Sciences Journal, 7(1):13-20.
- Julianti, S. R. (2017). Karakteristik fisikokimia dan bioavailabilitas nanokalsium hasil ekstraksi tulang ikan bandeng (Chanos chanos) menggunakan larutan basa. Thesis. Malang: Universitas Brawijaya.
- Jung, W. K., Shahidi, F., & Kim, S. K. (2007). Calcium from fish bone and other marine resources. In C. Borrow & F. Shahidi (Ed.), Marine nutraceuticals and functional foods. (pp. 419-429). Florida: CRC Press.
- Kelly, O., Cusack, S., Jewell, C., & Cashman, K. D. (2003). The effect of polyunsaturated fatty acids, including conjugated linoleic acid, on calcium absorption and bone metabolism and composition in young growing rats. British Journal of Nutrition, 90(4):743-750.
- KKP (Kementerian Perikanan dan Kelautan). (2021). Laporan Tahunan 2021. Jakarta: Ditjen Perikanan Tangkap.
- Kusumaningrum, I., Sutono, D., & Pamungkas, B. F. (2016). Pemanfaatan tulang ikan belida sebagai tepung sumber kalsium dengan metode alkali. Jurnal Pengolahan Hasil Perikanan Indonesia, 19(2):148-155.
- Kusumawati, P., Triwitono, P., Anggrahini, S., & Pranoto, Y. (2022). Nano-calcium powder properties from six commercial fish bone waste in Indonesia. Squalen Bulletin Marine and Fisheries Postharvest Biotechnology, 17(1):1-12.
- Lee, S. J., Lee, S. Y., Chung, M. S., & Hur, S. J. (2016). Development of novel in vitro human digestion systems for screening the bioavailability and digestibility of foods. Journal of Functional Foods, 22:113-121.
- Liao, W., Chen, H., Jin, W., Yang, Z., Cao, Y., & Miao, J. (2020). Three newly isolated calcium-chelating peptides from tilapia bone collagen hydrolysate enhance calcium absorption activity in intestinal caco-2 cells. Journal of Agricultural and Food Chemistry, 68(7):2091-2098.
- Malde, M. K., Bügel, S., Kristensen, M., Malde, K., Graff, I. E., & Pedersen, J. I. (2010). Calcium from salmon and cod bone is well absorbed in young healthy men: A double-blinded randomised crossover design. Nutrition and Metabolism, 7(61):1-9.
- Mescher, A. L. (2016). Junqueira's basic histology text & atlas (14th ed.) USA: McGraw Hill.
- Nam, P. V., Van Hoa, N., & Trung, T. S. (2019). Properties of hydroxyapatites prepared from different fish bones: A comparative study. Ceramics International, 45(16):20141-20147.
- Nandiyanto, A. B. D., Oktiani, R., & Ragadhita, R. (2019). How to read and interpret ftir spectroscope of organic material. Indonesian Journal of Science and Technology, 4(1):97-118.
- Nemati, M., Huda, N., & Ariffin, F. (2017). Development of calcium supplement from fish bone wastes of yellowfin tuna (Thunnus albacares) and characterization of nutritional quality. International Food Research Journal, 24(6):2419-2426.
- Nawaz, A., Li, E., Irshad, S., Hamad, H. H. M., Liu, J., Shahbaz, H. M., Ahmed, W., & Regenstein, J. M. (2020). Improved effect of autoclave processing on size reduction, chemical structure, nutritional, mechanical and in vitro digestibility properties of fish bone powder. Advanced Powder Technology, 31(6):2513-2520.
- Pertiwi, M. G. P., Marsono, Y., & Indrati, R. (2020). In vitro gastrointestinal simulation of tempe prepared from koro kratok (Phaseolus lunatus L.) as an angiotensin-converting enzyme inhibitor. Journal of Food Science and Technology, 57(5):1847-1855.
- Pu'ad, N. A. S. M., Koshy, P., Abdullah, H. Z., Idris, M. I., & Lee, T. C. (2019). Syntheses of hydroxyapatite from natural sources. Heliyon, 5(5):1-14.
- Prinaldi, W. V., Suptijah, P., & Uju. (2018). Karakteristik Sifat fisikokimia nano-kalsium ekstrak tulang ikan tuna sirip kuning (Thunnus albacares). Jurnal Pengolahan Hasil Perikanan Indonesia, 21(3):385-395.
- Ratnawati, S. E., Ekantari, N., & Ustadi. (2020). The utilization of catfish bone waste as microcalcium by different preparation methods. E3S Web of Conferences, 147(3):03031.
- Riaz, T., Zeeshan, R., Zarif, F., Ilyas, K., Muhammad, N., Safi, S. Z., Rahim, A., Rizvi, S. A. A., & Rehman, I. U. (2018). FTIR analysis of natural and synthetic collagen. Applied Spectroscopy Reviews, 53(9):703-746.
- Shi, P., Liu, M., Fan, F., Yu, C., Lu, W., & Du, M. (2018). Characterization of natural hydroxyapatite originated from fish bone and its biocompatibility with osteoblasts. Materials Science and Engineering: C, 90:706-712.
- Siddharthan, A., Sampath Kumar, T. S., & Seshadri, S. K. (2009). Synthesis and characterization of nanocrystalline apatites from eggshells at different Ca/P ratios. Biomedical Materials, 4(4):1-9.
- Sumarto, Desmelati, Sari, N. I., Angraini, R. M., & Arieska, L. (2021). Characteristic of nano-calcium bone from a different species of catfish (Pangasius hypophthalmus, Clarias batrachus, Hemibagrus nemurus and Paraplotosus albilabris). IOP Conference Series: Earth and Environmental Science, 695(012055):1-8.
- Suntornsaratoon, P., Charoenphandhu, N., & Krishnamra, N. (2018). Fortified tuna bone powder supplementation increases bone mineral density of lactating rats and their offspring. Journal of the Science of Food and Agriculture, 98(5):2027-2034.
- Talib, A., & Zailani, K. (2017). Extraction and Purification of yellowfin tuna fishbone flour as an ingredient of future traditional medicine. IOSR Journal of Pharmacy, 7(11):8-14.
- Tang, N., & Skibsted, L. H. (2016). Calcium binding to amino acids and small glycine peptides in aqueous solution: Toward peptide design for better calcium bioavailability. Journal of Agricultural and Food Chemistry, 64(21):4376-4389.
- Taşbozan, O., & Gökçe, M. A. (2017). Fatty acids in fish. In A. Catala (Ed.), Fatty acids. (pp. 143-159). London: IntechOpen.
- Wang, Y., Dellatore, P., Douard, V., Qin, L., Watford, M., Ferraris, R. P., Lin, T., & Shapses, S. A. (2016). High fat diet enriched with saturated, but not monounsaturated fatty acids adversely affects femur, and both diets increase calcium absorption in older female mice. Nutrition Research, 36(7):742-750.
- Yin, T., Du, H., Zhang, J., & Xiong, S. (2016). Preparation and characterization of ultrafine fish bone powder. Journal of Aquatic Food Product Technology, 25(7):1045-1055.
- Yin, T., Park, J. W., & Xiong, S. (2015). Physicochemical properties of nano fish bone prepared by wet media milling. LWT - Food Science and Technology, 64(1):367-373.
- Yusuf, Y., Khasanah, D. U., Syafaat, F. Y., Pawarangan, I., Sari, M., Manuntu, V. J., & Rizkayanti, Y. (2019). Hidroksiapatit berbahan dasar biogenik (1st ed.). Yogyakarta: Gadjah Mada University Press.
References
Abdullah, A., & Mohammed, A. (2019). Scanning electron microscopy (SEM): A review. Paper presented at the Proceedings of 2018 International Conference on Hydraulics Pneumatics – HERVEX, Băile Govora, Romania.
Abid, N., Khan, A. M., Shujait, S., Chaudhary, K., Ikram, M., Imran, M., Haider, J., Khan, M., Khan, Q., & Maqbool, M. (2022). Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: A review. Advances in Colloid and Interface Science, 300:102597.
Acar, S., Demir, K., & Shi, Y. (2017). Genetic causes of rickets. Journal of Clinical Research in Pediatric Endocrinology, 9(2):88-105.
Alegría, A., Garcia-Llatas, G., & Cilla, A. (2015). Static digestion models: General introduction. In K. Verhoeckx, P. Cotter, I. López-Expósito, C. Kleiveland, T. Lea, & A. Mackie (Ed.), The impact of food bioactives on health: In vitro and ex vivo models. (pp. 3–12). New York: Springer International Publishing.
Al-Timimi, Z., & Tammemi, Z. J. (2022). Polymer Blends and nanocomposite materials based on Polymethyl Methacrylate (PMMA) for bone regeneration and repair. Journal of Sustainable Materials Processing and Management, 2(1):15-23.
Ali, M., Kusnadi, J., Aulanni'am, A., & Yunianta, Y. (2020). Amino acids, fatty acids and volatile compounds of Terasi Udang, an Indonesian shrimp paste, during fermentation. AACL Bioflux, 13(2):938-50.
Amitha, Raju, C. V., Lakshmisha, I. P., Kumar, P. A., Sarojini, A., Endra, G., & Pal, J. (2019). Nutritional composition of fish bone powder extracted from three different fish filleting waste boiling with water and an alkaline media. International Journal of Current Microbiology and Applied Sciences, 8(02):2942-2948.
Anggraeni, N. (2019). Bioavailabilitas nanokalsium hasil ekstraksi tulang ikan nila (Oreochromis niloticus) dengan variasi konsentasi pelarut basa dan lama ekstraksi. Thesis. Yogyakarta: Universitas Gadjah Mada.
Bandali, E., Wang, Y., Rogers, M., & Shapses, S. (2018). The influence of dietary fat and intestinal pH on calcium bioaccessibility: an in vitro study. Food and Function, 9(3):1809-1815.
Bas, M., Daglilar, S., Kuskonmaz, N., Kalkandelen, C., Erdemir, G., Kuruca, S. E., Tulyaganov, D., Yoshioka, T., Gunduz, O., Ficai, D., & Ficai, A. (2020). Mechanical and biocompatibility properties of calcium phosphate bioceramics derived from salmon fish bone wastes. International Journal of Molecular Sciences, 21(21):1-14.
Benjakul, S., Mad-Ali, S., Senphan, T., & Sookchoo, P. (2018). Characteristics of biocalcium from pre-cooked skipjack tuna bone as affected by different treatments. Waste and Biomass Valorization, 9(8):1369-1377.
Benjakul, S., Mad-Ali, S., & Sookchoo, P. (2017). Characteristics of biocalcium powders from pre-cooked tongol (Thunnus tonggol) and yellowfin (Thunnus albacores) tuna bones. Food Biophysics, 12(4):412-421.
Biazar, E., Joupari, M. D., Keshel, S. H., Amirhosein, D. N., Kamalvand, M., Sahebalzamani, M., Roniyan, R., Shabankhah, M., & Farajpour, F. (2020). Characterization and biocompatibility of hydroxyapatite nanoparticles extracted from fish bone. Bioengineering Research, 2(2):10-19.
Cormick, G., & Belizán, J. M. (2019). Calcium intake and health. Nutrients, 11(7):1-16.
Corríªa, T. H. A., & Holanda, J. N. F. (2019). Fish bone as a source of raw material for synthesis of calcium phosphate. Materials Research, 22:1-5.
Dewiasty, E., Setiati, S., Agustina, R., Roosheroe, A. G., Abdullah, M., Istanti, R., & de Groot, L. C. (2021). Prevalence of lactose intolerance and nutrients intake in an older population regarded as lactase non-persistent. Clinical Nutrition ESPEN, 43(1):317-321.
Estiasih, T., & Ahmadi, K. (2012). Pembuatan trigliserida kaya asam lemak ω-3 dari minyak hasil samping pengalengan ikan lemuru (Sardinella longiceps). Jurnal Teknologi Pertanian, 5(3):116-128.
Hemung, B. O. (2013). Properties of tilapia bone powder and its calcium bioavailability based on transglutaminase assay. International Journal of Bioscience, Biochemistry and Bioinformatics, 3(4):306-309.
Hodges, J. K., Cao, S., Cladis, D. P., & Weaver, C. M. (2019). Lactose intolerance and bone health: The challenge of ensuring adequate calcium intake. Nutrients, 11(718):1-17
Husna, A., Handayani, L., & Syahputra, F. (2020). Pemanfaatan tulang ikan kambing-kambing (Abalistes stellaris) sebagai sumber kalsium pada produk tepung tulang ikan. Acta Aquatica: Aquatic Sciences Journal, 7(1):13-20.
Julianti, S. R. (2017). Karakteristik fisikokimia dan bioavailabilitas nanokalsium hasil ekstraksi tulang ikan bandeng (Chanos chanos) menggunakan larutan basa. Thesis. Malang: Universitas Brawijaya.
Jung, W. K., Shahidi, F., & Kim, S. K. (2007). Calcium from fish bone and other marine resources. In C. Borrow & F. Shahidi (Ed.), Marine nutraceuticals and functional foods. (pp. 419-429). Florida: CRC Press.
Kelly, O., Cusack, S., Jewell, C., & Cashman, K. D. (2003). The effect of polyunsaturated fatty acids, including conjugated linoleic acid, on calcium absorption and bone metabolism and composition in young growing rats. British Journal of Nutrition, 90(4):743-750.
KKP (Kementerian Perikanan dan Kelautan). (2021). Laporan Tahunan 2021. Jakarta: Ditjen Perikanan Tangkap.
Kusumaningrum, I., Sutono, D., & Pamungkas, B. F. (2016). Pemanfaatan tulang ikan belida sebagai tepung sumber kalsium dengan metode alkali. Jurnal Pengolahan Hasil Perikanan Indonesia, 19(2):148-155.
Kusumawati, P., Triwitono, P., Anggrahini, S., & Pranoto, Y. (2022). Nano-calcium powder properties from six commercial fish bone waste in Indonesia. Squalen Bulletin Marine and Fisheries Postharvest Biotechnology, 17(1):1-12.
Lee, S. J., Lee, S. Y., Chung, M. S., & Hur, S. J. (2016). Development of novel in vitro human digestion systems for screening the bioavailability and digestibility of foods. Journal of Functional Foods, 22:113-121.
Liao, W., Chen, H., Jin, W., Yang, Z., Cao, Y., & Miao, J. (2020). Three newly isolated calcium-chelating peptides from tilapia bone collagen hydrolysate enhance calcium absorption activity in intestinal caco-2 cells. Journal of Agricultural and Food Chemistry, 68(7):2091-2098.
Malde, M. K., Bügel, S., Kristensen, M., Malde, K., Graff, I. E., & Pedersen, J. I. (2010). Calcium from salmon and cod bone is well absorbed in young healthy men: A double-blinded randomised crossover design. Nutrition and Metabolism, 7(61):1-9.
Mescher, A. L. (2016). Junqueira's basic histology text & atlas (14th ed.) USA: McGraw Hill.
Nam, P. V., Van Hoa, N., & Trung, T. S. (2019). Properties of hydroxyapatites prepared from different fish bones: A comparative study. Ceramics International, 45(16):20141-20147.
Nandiyanto, A. B. D., Oktiani, R., & Ragadhita, R. (2019). How to read and interpret ftir spectroscope of organic material. Indonesian Journal of Science and Technology, 4(1):97-118.
Nemati, M., Huda, N., & Ariffin, F. (2017). Development of calcium supplement from fish bone wastes of yellowfin tuna (Thunnus albacares) and characterization of nutritional quality. International Food Research Journal, 24(6):2419-2426.
Nawaz, A., Li, E., Irshad, S., Hamad, H. H. M., Liu, J., Shahbaz, H. M., Ahmed, W., & Regenstein, J. M. (2020). Improved effect of autoclave processing on size reduction, chemical structure, nutritional, mechanical and in vitro digestibility properties of fish bone powder. Advanced Powder Technology, 31(6):2513-2520.
Pertiwi, M. G. P., Marsono, Y., & Indrati, R. (2020). In vitro gastrointestinal simulation of tempe prepared from koro kratok (Phaseolus lunatus L.) as an angiotensin-converting enzyme inhibitor. Journal of Food Science and Technology, 57(5):1847-1855.
Pu'ad, N. A. S. M., Koshy, P., Abdullah, H. Z., Idris, M. I., & Lee, T. C. (2019). Syntheses of hydroxyapatite from natural sources. Heliyon, 5(5):1-14.
Prinaldi, W. V., Suptijah, P., & Uju. (2018). Karakteristik Sifat fisikokimia nano-kalsium ekstrak tulang ikan tuna sirip kuning (Thunnus albacares). Jurnal Pengolahan Hasil Perikanan Indonesia, 21(3):385-395.
Ratnawati, S. E., Ekantari, N., & Ustadi. (2020). The utilization of catfish bone waste as microcalcium by different preparation methods. E3S Web of Conferences, 147(3):03031.
Riaz, T., Zeeshan, R., Zarif, F., Ilyas, K., Muhammad, N., Safi, S. Z., Rahim, A., Rizvi, S. A. A., & Rehman, I. U. (2018). FTIR analysis of natural and synthetic collagen. Applied Spectroscopy Reviews, 53(9):703-746.
Shi, P., Liu, M., Fan, F., Yu, C., Lu, W., & Du, M. (2018). Characterization of natural hydroxyapatite originated from fish bone and its biocompatibility with osteoblasts. Materials Science and Engineering: C, 90:706-712.
Siddharthan, A., Sampath Kumar, T. S., & Seshadri, S. K. (2009). Synthesis and characterization of nanocrystalline apatites from eggshells at different Ca/P ratios. Biomedical Materials, 4(4):1-9.
Sumarto, Desmelati, Sari, N. I., Angraini, R. M., & Arieska, L. (2021). Characteristic of nano-calcium bone from a different species of catfish (Pangasius hypophthalmus, Clarias batrachus, Hemibagrus nemurus and Paraplotosus albilabris). IOP Conference Series: Earth and Environmental Science, 695(012055):1-8.
Suntornsaratoon, P., Charoenphandhu, N., & Krishnamra, N. (2018). Fortified tuna bone powder supplementation increases bone mineral density of lactating rats and their offspring. Journal of the Science of Food and Agriculture, 98(5):2027-2034.
Talib, A., & Zailani, K. (2017). Extraction and Purification of yellowfin tuna fishbone flour as an ingredient of future traditional medicine. IOSR Journal of Pharmacy, 7(11):8-14.
Tang, N., & Skibsted, L. H. (2016). Calcium binding to amino acids and small glycine peptides in aqueous solution: Toward peptide design for better calcium bioavailability. Journal of Agricultural and Food Chemistry, 64(21):4376-4389.
Taşbozan, O., & Gökçe, M. A. (2017). Fatty acids in fish. In A. Catala (Ed.), Fatty acids. (pp. 143-159). London: IntechOpen.
Wang, Y., Dellatore, P., Douard, V., Qin, L., Watford, M., Ferraris, R. P., Lin, T., & Shapses, S. A. (2016). High fat diet enriched with saturated, but not monounsaturated fatty acids adversely affects femur, and both diets increase calcium absorption in older female mice. Nutrition Research, 36(7):742-750.
Yin, T., Du, H., Zhang, J., & Xiong, S. (2016). Preparation and characterization of ultrafine fish bone powder. Journal of Aquatic Food Product Technology, 25(7):1045-1055.
Yin, T., Park, J. W., & Xiong, S. (2015). Physicochemical properties of nano fish bone prepared by wet media milling. LWT - Food Science and Technology, 64(1):367-373.
Yusuf, Y., Khasanah, D. U., Syafaat, F. Y., Pawarangan, I., Sari, M., Manuntu, V. J., & Rizkayanti, Y. (2019). Hidroksiapatit berbahan dasar biogenik (1st ed.). Yogyakarta: Gadjah Mada University Press.