Date Log
Copyright (c) 2022 Jurnal Ilmiah Perikanan dan Kelautan
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
1. Copyright of the article is transferred to the journal, by the knowledge of the author, whilst the moral right of the publication belongs to the author.
2. The legal formal aspect of journal publication accessibility refers to Creative Commons Atribusi-Non Commercial-Share alike (CC BY-NC-SA), (https://creativecommons.org/licenses/by-nc-sa/4.0/)
3. The articles published in the journal are open access and can be used for non-commercial purposes. Other than the aims mentioned above, the editorial board is not responsible for copyright violation
The manuscript authentic and copyright statement submission can be downloaded ON THIS FORM.
Epipsammic Diatom Cocconesis sp. as New Bioeroder in Scleractinian Coral
Corresponding Author(s) : Oktiyas Muzaky Luthfi
Jurnal Ilmiah Perikanan dan Kelautan, Vol. 15 No. 1 (2023): JURNAL ILMIAH PERIKANAN DAN KELAUTAN
Abstract
Highlight Research
- The endolithic bioeroders were identified.
- Cocconeis sp. was new for the science of euendolithic bioeroder of Scleractinian coral.
- SEM revealed Cocconeis sp. etch and bore of coral skeleton.
- Pennate diatom was present on coral cavities.
Abstract
Laminar coral, Montipora, contributes to the coral reef ecosystem. The laminar life form is usually used by juvenile reef biota to shelter and prey. In an intertidal area, such as Pantai Kondang Merak, these corals are susceptible to erosion caused by mechanical and biological forces. Strong current or other anthropogenic activity may break coral colonies into pieces. Also, some grazers from reef fish and bioeroder potentially weaken coral structures. This study aimed to find the effect of biological agents from Bacillariophyceae, such as Cocconeis diatom, on the bioerosion process in laminar coral, e.g., Montipora. Ten montiporid corals from Pantai Kondang Merak were observed to find bio-eroding activities. Each coral colony was divided into 12 parts and photographed to record signs of bio-erosion on coral surface. While observing microborers, a 2x2 cm of the coral surface was observed using Scanning Electron Microscopy (SEM). SEM revealed that a frustule of Cocconeis sp. was found inside aragonite laminar coral from Pantai Kondang Merak. Cocconeis naturally grows on the coasts of tropical oceans as benthic organisms. They are reported as living attached to many substrates' surfaces and within the substrate as euendolith. This study revealed that Cocconeis sp. lived inside the coral skeleton as micro bioeroder by attaching their valve in coral aragonite. Further work needs more observations of another potential euendolith diatom living inside the coral and to build new information on their mechanism of bio-eroding process in more detail.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Allemand, D., Tambutté, í‰., Zoccola, D., & Tambutté, S. (2011). Coral calcification, cells to reefs. In Z. Dubinsky & N. Stambler (Ed.), Coral reefs: an ecosystem in transition. (pp. 119-150). Berlin: Springer Dordrecht.
- Bellwood, D. R., Streit, R. P., Brandl, S. J., & Tebbett, S. B. (2019). The meaning of the term ‘function' in ecology: A coral reef perspective. Functional Ecology, 33(6):948-961.
- Bentis, C. J., Kaufman, L., & Golubic, S. (2000). Endolithic fungi in reef-building corals (Order: Scleractinia) are common, cosmopolitan, and potentially pathogenic. The Biological Bulletin, 198(2):254-260.
- Blinn, D. W., Fredericksen, A., & Korte, V. (1980). Colonization rates and community structure of diatoms on three different rock substrata in a lotic system. British Phycological Journal, 15(4):303-310.
- Bodén, P. (1988). Epipsammic diatoms as borers: an observation on calcareous sand grains. Sedimentary Geology, 59(1-2):143-147.
- Chabanet, P., Adjeroud, M., Andréfouí«t, S., Bozec, Y. M., Ferraris, J., Garcí¬a-Charton, J. A., & Schrimm, M. (2005). Human-induced physical disturbances and their indicators on coral reef habitats: A multi-scale approach. Aquatic Living Resources, 18(3):215-230.
- Chiovitti, A., Dugdale, T. M., & Wetherbee, R. (2006). Diatom adhesives: molecular and mechanical properties. In A. M. Smith & J. A. Callow (Ed.), Biological adhesives. (pp. 79-103). Berlin: Springer.
- Daniel, G. F., Chamberlain, A. H. L., & Jones, E. B. G. (1987). Cytochemical and electron microscopical observations on the adhesive materials of marine fouling diatoms. British Phycological Journal, 22(2):101-118.
- Davidson, T. M., Altieri, A. H., Ruiz, G. M., & Torchin, M. E. (2018). Bioerosion in a changing world: a conceptual framework. Ecology Letters, 21(3):422-438.
- DeCarlo, T. M., Holcomb, M., & McCulloch, M. T. (2018). Reviews and syntheses: Revisiting the boron systematics of aragonite and their application to coral calcification. Biogeosciences, 15(9):2819-2834.
- Flora J. Vincent, Sébastien Colin, Sarah Romac, Eleonora Scalco, Lucie Bittner, Yonara Garcia, Rubens M. Lopes, John R. Dolan, Adriana Zingone, Colomban de Vargas, Chris Bowler. (2018). The epibiotic life of the cosmopolitan diatom Fragilariopsis doliolus on heterotrophic ciliates in the open ocean. The ISME Journal 12:1094-1108.
- Glynn, P. W., & Enochs, I. C. (2011). Invertebrates and their roles in coral reef ecosystems. In Z. Dubinsky & N. Stambler (Ed.), Coral reefs: an ecosystem in transition (pp. 273-325). Berlin: Springer Dordrecht.
- Glynn, P. W., & Manzello, D. P. (2015). Bioerosion and coral reef growth: a dynamic balance. In C. Birkeland (Ed.), Coral reefs in the Anthropocene. (pp. 67-97). Berlin: Springer Dordrecht.
- Golubić, S., & Schneider, J. (1979). Carbonate dissolution. In P. A. Trudinger, D. J. Swaine (Ed.), Biogeochemical cycling of mineral-forming elements. (pp. 107-129). Amsterdam: Elsevier.
- Gutner-Hoch, E., & Fine, M. (2011). Genotypic diversity and distribution of Ostreobium quekettii within scleractinian corals. Coral Reefs, 30(3):643-650.
- Hutchings, P. (2008). Role of polychaetes in bioerosion of coral substrates. In M. Wisshak & L. Tapanila (Ed.), Current developments in bioerosion. (pp. 249-264). Berlin: Springer.
- Hutchings, P. (2011). Bioerosion. In D. Hopley (Ed.), Encyclopedia of modern coral reefs: structure, form and process. (pp. 139-156). Berlin: Springer Dordrecht.
- Hutchings, P. A. (1986). Biological destruction of coral reefs. Coral Reefs, 4(4):239-252.
- Kawamura, T., Nimura, Y., & Hirano, R. (1988). Effects of bacterial films on diatom attachment in the initial phase of marine fouling. Journal of the Oceanographical Society of Japan, 44(1):1-5.
- Kryk, A., Bak, M., Górecka, E., Riaux-Gobin, C., Bemiasa, J., Bemanaja, E., Li, C., Bek, P. D., & Witkowski, A. (2020). Marine diatom assemblages of the Nosy Be Island coasts, NW Madagascar: species composition and biodiversity using molecular and morphological taxonomy. Systematics and Biodiversity, 18(2):161-180.
- Kuffner, I. B., Toth, L. T., Hudson, J. H., Goodwin, W. B., Stathakopoulos, A., Bartlett, L. A., & Whitcher, E. M. (2019). Improving estimates of coral reef construction and erosion with in situ measurements. Limnology and Oceanography, 64(5):2283-2294.
- Larkum, A. W. D., Koch, E. M., & Kühl, M. (2003). Diffusive boundary layers and photosynthesis of the epilithic algal community of coral reefs. Marine Biology, 142(6):1073-1082.
- Luthfi, O. M., & Priyambodo, A. H. (2020). Bioerosion in massive porites at reef flat area of the south Java Sea. IOP Conference Series: Earth and Environmental Science, 420(1):12019.
- Luthfi, O. M., Yulianto, F., Handayani, M., & Soegianto, A. (2020). Transmission of white syndrome disease on foliose coral (Echinopora sp. and Montipora sp.) in Pulau Sempu Nature Reserve Water, Malang Regency. Annals of Biology, 36(2):288-292.
- Maher, R. L., Johnston, M. A., Brandt, M. E., Smith, T. B., & Correa, A. M. S. (2018). Depth and coral cover drive the distribution of a coral macroborer across two reef systems. PloS One, 13(6):e0199462.
- Manoylov, K., & Ghobara, M. (2021). Introduction for a tutorial on diatom morphology. In V. Annenkov, J. Seckback, & R. Gordon (Ed.), Diatom morphogenesis. (pp. 3-15). Massachusetts: Scrivener Publishing LLC.
- Massé, A., Domart-Coulon, I., Golubic, S., Duché, D., & Tribollet, A. (2018). Early skeletal colonization of the coral holobiont by the microboring Ulvophyceae Ostreobium sp. Scientific Reports, 8(1):1-11.
- Mumby, P. J. (2009). Herbivory versus corallivory: are parrotfish good or bad for Caribbean coral reefs? Coral Reefs, 28(3):683-690.
- Nicholson, G. M., & Clements, K. D. (2020). Resolving resource partitioning in parrotfishes (Scarini) using microhistology of feeding substrata. Coral Reefs, 39(5):1313-1327.
- Pernice, M., Raina, J. B., Rädecker, N., Cárdenas, A., Pogoreutz, C., & Voolstra, C. R. (2020). Down to the bone: the role of overlooked endolithic microbiomes in reef coral health. The ISME Journal, 14(2):325-334.
- Priess, K., Le Campion-Alsumard, T., Golubic, S., Gadel, F., & Thomassin, B. A. (2000). Fungi in corals: black bands and density-banding of Porites lutea and P. lobata skeleton. Marine Biology, 136(1):19-27.
- Riaux-Gobin, C., Frankovich, T., Witkowski, A., Saenz-Agudelo, P., Esteve, P., Ector, L., & Bemiasa, J. (2021). Cocconeis tsara sp. nov., C. santandrea sp. nov. and allied taxa pertaining to the new section Loculatae. Phytotaxa, 484(2):145-169.
- Riccio, G., & Lauritano, C. (2019). Microalgae with immunomodulatory activities. Marine Drugs, 18(2):1-18.
- Risjani, Y., Witkowski, A., Kryk, A., Yunianta, Górecka, E., Krzywda, M., Safitri, I., Sapar, A., DÄ…bek, P., Arsad, S., Gusev, E., Rudiyansyah, Peszek, L., & Wróbel, R. J. (2021). Indonesian coral reef habitats reveal exceptionally high species richness and biodiversity of diatom assemblages. Estuarine, Coastal and Shelf Science, 261:107551.
- Tribollet, A. (2008). The boring microflora in modern coral reef ecosystems: a review of its roles. In M. Wisshak & L. Tapanila (Ed.), Current Developments in Bioerosion. (pp. 67-94). Berlin: Springer.
- Tribollet, A., & Golubic, S. (2011). Reef bioerosion: agents and processes. In Z. Dubinsky & N. Stambler (Ed.), Coral reefs: an ecosystem in transition. (pp. 435-449). Berlin: Springer Dordrecht.
- van Oppen, M. J. H., & Blackall, L. L. (2019). Coral microbiome dynamics, functions and design in a changing world. Nature Reviews Microbiology, 17(9):557-567.
- Weinstein, D. K., Maher, R. L., & Correa, A. M. S. (2019). Bioerosion. In Y. Loya, K. A. Puglise, & T. C. L. Bridge (Ed.), Mesophotic coral ecosystems. (pp. 829-847). Cham, Switzerland: Springer.
- Wisshak, M, Tribollet, A., Golubic, S., Jakobsen, J., & Freiwald, A. (2011). Temperate bioerosion: ichnodiversity and biodiversity from intertidal to bathyal depths (Azores). Geobiology, 9(6):492-520.
- Wisshak, M., Alexandrakis, E., & Hoppenrath, M. (2014). The diatom attachment scar Ophthalmichnus lyolithon igen. et isp. n. Ichnos, 21(2):111-118.
- Witkowski, A. (2001). Diatom monographs. Dubai: Gantner.
- Yang, S. H., & Tang, S. L. (2019). Endolithic microbes in coral skeletons: algae or bacteria? In Z. Li (Ed.), Symbiotic microbiomes of coral reefs sponges and corals. (pp. 43-53). Berlin: Springer Dordrecht.
References
Allemand, D., Tambutté, í‰., Zoccola, D., & Tambutté, S. (2011). Coral calcification, cells to reefs. In Z. Dubinsky & N. Stambler (Ed.), Coral reefs: an ecosystem in transition. (pp. 119-150). Berlin: Springer Dordrecht.
Bellwood, D. R., Streit, R. P., Brandl, S. J., & Tebbett, S. B. (2019). The meaning of the term ‘function' in ecology: A coral reef perspective. Functional Ecology, 33(6):948-961.
Bentis, C. J., Kaufman, L., & Golubic, S. (2000). Endolithic fungi in reef-building corals (Order: Scleractinia) are common, cosmopolitan, and potentially pathogenic. The Biological Bulletin, 198(2):254-260.
Blinn, D. W., Fredericksen, A., & Korte, V. (1980). Colonization rates and community structure of diatoms on three different rock substrata in a lotic system. British Phycological Journal, 15(4):303-310.
Bodén, P. (1988). Epipsammic diatoms as borers: an observation on calcareous sand grains. Sedimentary Geology, 59(1-2):143-147.
Chabanet, P., Adjeroud, M., Andréfouí«t, S., Bozec, Y. M., Ferraris, J., Garcí¬a-Charton, J. A., & Schrimm, M. (2005). Human-induced physical disturbances and their indicators on coral reef habitats: A multi-scale approach. Aquatic Living Resources, 18(3):215-230.
Chiovitti, A., Dugdale, T. M., & Wetherbee, R. (2006). Diatom adhesives: molecular and mechanical properties. In A. M. Smith & J. A. Callow (Ed.), Biological adhesives. (pp. 79-103). Berlin: Springer.
Daniel, G. F., Chamberlain, A. H. L., & Jones, E. B. G. (1987). Cytochemical and electron microscopical observations on the adhesive materials of marine fouling diatoms. British Phycological Journal, 22(2):101-118.
Davidson, T. M., Altieri, A. H., Ruiz, G. M., & Torchin, M. E. (2018). Bioerosion in a changing world: a conceptual framework. Ecology Letters, 21(3):422-438.
DeCarlo, T. M., Holcomb, M., & McCulloch, M. T. (2018). Reviews and syntheses: Revisiting the boron systematics of aragonite and their application to coral calcification. Biogeosciences, 15(9):2819-2834.
Flora J. Vincent, Sébastien Colin, Sarah Romac, Eleonora Scalco, Lucie Bittner, Yonara Garcia, Rubens M. Lopes, John R. Dolan, Adriana Zingone, Colomban de Vargas, Chris Bowler. (2018). The epibiotic life of the cosmopolitan diatom Fragilariopsis doliolus on heterotrophic ciliates in the open ocean. The ISME Journal 12:1094-1108.
Glynn, P. W., & Enochs, I. C. (2011). Invertebrates and their roles in coral reef ecosystems. In Z. Dubinsky & N. Stambler (Ed.), Coral reefs: an ecosystem in transition (pp. 273-325). Berlin: Springer Dordrecht.
Glynn, P. W., & Manzello, D. P. (2015). Bioerosion and coral reef growth: a dynamic balance. In C. Birkeland (Ed.), Coral reefs in the Anthropocene. (pp. 67-97). Berlin: Springer Dordrecht.
Golubić, S., & Schneider, J. (1979). Carbonate dissolution. In P. A. Trudinger, D. J. Swaine (Ed.), Biogeochemical cycling of mineral-forming elements. (pp. 107-129). Amsterdam: Elsevier.
Gutner-Hoch, E., & Fine, M. (2011). Genotypic diversity and distribution of Ostreobium quekettii within scleractinian corals. Coral Reefs, 30(3):643-650.
Hutchings, P. (2008). Role of polychaetes in bioerosion of coral substrates. In M. Wisshak & L. Tapanila (Ed.), Current developments in bioerosion. (pp. 249-264). Berlin: Springer.
Hutchings, P. (2011). Bioerosion. In D. Hopley (Ed.), Encyclopedia of modern coral reefs: structure, form and process. (pp. 139-156). Berlin: Springer Dordrecht.
Hutchings, P. A. (1986). Biological destruction of coral reefs. Coral Reefs, 4(4):239-252.
Kawamura, T., Nimura, Y., & Hirano, R. (1988). Effects of bacterial films on diatom attachment in the initial phase of marine fouling. Journal of the Oceanographical Society of Japan, 44(1):1-5.
Kryk, A., Bak, M., Górecka, E., Riaux-Gobin, C., Bemiasa, J., Bemanaja, E., Li, C., Bek, P. D., & Witkowski, A. (2020). Marine diatom assemblages of the Nosy Be Island coasts, NW Madagascar: species composition and biodiversity using molecular and morphological taxonomy. Systematics and Biodiversity, 18(2):161-180.
Kuffner, I. B., Toth, L. T., Hudson, J. H., Goodwin, W. B., Stathakopoulos, A., Bartlett, L. A., & Whitcher, E. M. (2019). Improving estimates of coral reef construction and erosion with in situ measurements. Limnology and Oceanography, 64(5):2283-2294.
Larkum, A. W. D., Koch, E. M., & Kühl, M. (2003). Diffusive boundary layers and photosynthesis of the epilithic algal community of coral reefs. Marine Biology, 142(6):1073-1082.
Luthfi, O. M., & Priyambodo, A. H. (2020). Bioerosion in massive porites at reef flat area of the south Java Sea. IOP Conference Series: Earth and Environmental Science, 420(1):12019.
Luthfi, O. M., Yulianto, F., Handayani, M., & Soegianto, A. (2020). Transmission of white syndrome disease on foliose coral (Echinopora sp. and Montipora sp.) in Pulau Sempu Nature Reserve Water, Malang Regency. Annals of Biology, 36(2):288-292.
Maher, R. L., Johnston, M. A., Brandt, M. E., Smith, T. B., & Correa, A. M. S. (2018). Depth and coral cover drive the distribution of a coral macroborer across two reef systems. PloS One, 13(6):e0199462.
Manoylov, K., & Ghobara, M. (2021). Introduction for a tutorial on diatom morphology. In V. Annenkov, J. Seckback, & R. Gordon (Ed.), Diatom morphogenesis. (pp. 3-15). Massachusetts: Scrivener Publishing LLC.
Massé, A., Domart-Coulon, I., Golubic, S., Duché, D., & Tribollet, A. (2018). Early skeletal colonization of the coral holobiont by the microboring Ulvophyceae Ostreobium sp. Scientific Reports, 8(1):1-11.
Mumby, P. J. (2009). Herbivory versus corallivory: are parrotfish good or bad for Caribbean coral reefs? Coral Reefs, 28(3):683-690.
Nicholson, G. M., & Clements, K. D. (2020). Resolving resource partitioning in parrotfishes (Scarini) using microhistology of feeding substrata. Coral Reefs, 39(5):1313-1327.
Pernice, M., Raina, J. B., Rädecker, N., Cárdenas, A., Pogoreutz, C., & Voolstra, C. R. (2020). Down to the bone: the role of overlooked endolithic microbiomes in reef coral health. The ISME Journal, 14(2):325-334.
Priess, K., Le Campion-Alsumard, T., Golubic, S., Gadel, F., & Thomassin, B. A. (2000). Fungi in corals: black bands and density-banding of Porites lutea and P. lobata skeleton. Marine Biology, 136(1):19-27.
Riaux-Gobin, C., Frankovich, T., Witkowski, A., Saenz-Agudelo, P., Esteve, P., Ector, L., & Bemiasa, J. (2021). Cocconeis tsara sp. nov., C. santandrea sp. nov. and allied taxa pertaining to the new section Loculatae. Phytotaxa, 484(2):145-169.
Riccio, G., & Lauritano, C. (2019). Microalgae with immunomodulatory activities. Marine Drugs, 18(2):1-18.
Risjani, Y., Witkowski, A., Kryk, A., Yunianta, Górecka, E., Krzywda, M., Safitri, I., Sapar, A., DÄ…bek, P., Arsad, S., Gusev, E., Rudiyansyah, Peszek, L., & Wróbel, R. J. (2021). Indonesian coral reef habitats reveal exceptionally high species richness and biodiversity of diatom assemblages. Estuarine, Coastal and Shelf Science, 261:107551.
Tribollet, A. (2008). The boring microflora in modern coral reef ecosystems: a review of its roles. In M. Wisshak & L. Tapanila (Ed.), Current Developments in Bioerosion. (pp. 67-94). Berlin: Springer.
Tribollet, A., & Golubic, S. (2011). Reef bioerosion: agents and processes. In Z. Dubinsky & N. Stambler (Ed.), Coral reefs: an ecosystem in transition. (pp. 435-449). Berlin: Springer Dordrecht.
van Oppen, M. J. H., & Blackall, L. L. (2019). Coral microbiome dynamics, functions and design in a changing world. Nature Reviews Microbiology, 17(9):557-567.
Weinstein, D. K., Maher, R. L., & Correa, A. M. S. (2019). Bioerosion. In Y. Loya, K. A. Puglise, & T. C. L. Bridge (Ed.), Mesophotic coral ecosystems. (pp. 829-847). Cham, Switzerland: Springer.
Wisshak, M, Tribollet, A., Golubic, S., Jakobsen, J., & Freiwald, A. (2011). Temperate bioerosion: ichnodiversity and biodiversity from intertidal to bathyal depths (Azores). Geobiology, 9(6):492-520.
Wisshak, M., Alexandrakis, E., & Hoppenrath, M. (2014). The diatom attachment scar Ophthalmichnus lyolithon igen. et isp. n. Ichnos, 21(2):111-118.
Witkowski, A. (2001). Diatom monographs. Dubai: Gantner.
Yang, S. H., & Tang, S. L. (2019). Endolithic microbes in coral skeletons: algae or bacteria? In Z. Li (Ed.), Symbiotic microbiomes of coral reefs sponges and corals. (pp. 43-53). Berlin: Springer Dordrecht.