Date Log
Copyright (c) 2023 Jurnal Ilmiah Perikanan dan Kelautan
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
1. Copyright of the article is transferred to the journal, by the knowledge of the author, whilst the moral right of the publication belongs to the author.
2. The legal formal aspect of journal publication accessibility refers to Creative Commons Atribusi-Non Commercial-Share alike (CC BY-NC-SA), (https://creativecommons.org/licenses/by-nc-sa/4.0/)
3. The articles published in the journal are open access and can be used for non-commercial purposes. Other than the aims mentioned above, the editorial board is not responsible for copyright violation
The manuscript authentic and copyright statement submission can be downloaded ON THIS FORM.
Antioxidant Activity and Potential Bioactive Peptides from Skin Protein Hydrolysate of Yellowfin Tuna (Thunnus albacares)
Corresponding Author(s) : Joko Santoso
Jurnal Ilmiah Perikanan dan Kelautan, Vol. 15 No. 2 (2023): JURNAL ILMIAH PERIKANAN DAN KELAUTAN
Abstract
Highlight Research
- Immersion of tuna skin using NaHCO3 at low temperatures effectively reduces the fat content.
- The DH value, MW, and amino acid composition are in line with the antioxidant activity of tuna skin hydrolysate.
- The ABTS method showed the highest antioxidant activity in tuna skin hydrolysate.
- FPH of tuna skin shows functional group characteristics and amino acid composition that are similar to collagen hydrolysate products.
- FPH of tuna skin has the potential as a source of antioxidants, ACE inhibitors, and antifibrinolytics.
Abstract
The tuna fillet industry produces abundant skin by-products with high protein, which has the potential as a raw material for fish protein hydrolysate (FPH) for a source of bioactive peptides. Exploration of bioactive peptides from fish skin is generally from hydrolyzed gelatin and collagen. The study aimed to produce FPH directly from tuna skin as an antioxidant and identify potential bioactive peptides. The research began by defatting using multiple concentrations of NaHCO3 and immersion times. The defatted fish skin was produced as FPH by enzymatic hydrolysis method using different papain enzyme concentrations and hydrolysis times. The selected treatments were assessed for antioxidant activity and bioactive peptides. The results showed that the defatting process using a 0.50% NaHCO3 for 30 minutes generated the highest reducing fat content in value was 80.53%. Using papain enzyme gave a significant effect on the DH of FPH, with value was 29.72-67.64%. Therefore, FPH obtained from different concentrations for 4 hours was chosen to characterize the antioxidant activity and bioactive peptide. Hydrolysis using 5% enzyme papain showed the highest antioxidant activity of DPPH, ABTS, and reducing power with values of 0.965 mg/mL, 0.495 mg/mL, and 0.415 absorbances, respectively. FPH possesses a molecular weight of 10.15-48.50 kDa. Functional groups detected were amides A, B, I, II, and III. Glycine, proline, and arginine became amino acids dominant of FPH. Based on the diversity of biopeptide compounds, several biological function candidates were detected, namely antioxidants, ACE inhibitors, and antifibrinolytics which have the potential to be used as nutraceutical products.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Association of Analytical Chemist Publisher (AOAC). (2005). Official methods of analysis of the association of official analysis chemist. Arlington Virginia (US): The Association of Official Analytical Chemist, Inc.
- Agustin, V., Husni, A., & Putra, M.M.P. (2021). Antioxidant activity of protein hydrolysate from snakehead fish (Channa striata) viscera obtained by enzymatic process. IOP Conf Series: Earth and Environmental Science, 919(012046):1-7.
- Alahmad, K., Xia, W., Jiang, Q., & Xu, Y. (2022). Effect of the degree of hydrolysis on nutritional, functional, and morphological characteristics of protein hydrolysate produced from bighead carp (Hypophthalmichthys nobilis) using ficin enzyme. Foods, 11(9):1-17.
- Arlina, H., Santoso, J., Desniar. (2019). Aktivitas antioksidan hidrolisat protein miofibril belut (Synbranchus bengalensis) yang dihidrolisis dengan enzim papain. Jurnal Teknologi Industri Pertanian, 29(3):247-259.
- Asmak, N., Kusmiyati-Tjahjono, D. K., Chasanah, E., Fawzya, Y. N., Martosuyono, P., Nuryanto, & Afifah, D.N. (2020). The effect of fish protein hydrolysate (FPH) substitution complementary feeding formula on the albumin levels of Sprague Dawley rat. Food Research, 4(Suppl. 3):18-23.
- Baco, N., Oslan, S. N. H., Shapawi, R., Mohhtar, R. A. M., Noordin, W. N. M., & Huda, N. (2022). Antibacterial activity of functional bioactive peptides derived from fish protein hydrolysate. IOP Conference Series: Earth and Environmental Science, 967(012019):1-12.
- Baehaki, A., Widiastuti, I., Nainggolan, C., & Gofar, N. (2020). Antioxidant activities of snakehead (Channa striata) fish skin: Peptides hydrolysis using protease TP2 isolate from swamp plant silage. Slovak Journal of Food Sciences, 14:379-384.
- Bahurmiz M. (2019). Proximate and fatty acid composition of three tuna species from Hadhramout coast of the Arabian Sea, Yemen. Hadhramout University Journal of Natural & Applied Sciences, 16(1):63-71.
- Bi, C., Li, X., Xin, Q., Han, W., Shi, C., Guo, R., Shi, W., Qiao, R., Wang, X., & Zhong, J. (2019). Effect of extraction methods on the preparation of electrospun/electrosprayed microstructures of Tilapia skin collagen. Journal of Bioscience and Bioengineering, 128(2):234-240.
- Blanco, M., Vázquez, J. A., Pérez-Martín, R. I., & Sotelo, C. G. (2017). Hydrolysates of fish skin collagen: An opportunity for valorizing fish industry by-products. Marine Drugs, 15(5)1-15.
- Chen, X. X., Hu, X., Li, L. H., Yang, X. Q., Wu, Y. Y., Lin, W. L., Zhao, Y. Q., Ma, H. X., & Wei, Y. (2014). Antioxidant properties of Tilapia component protein hydrolysates and the membrane ultrafiltration fractions. Advanced Materials Research, 1812-1817.
- Chi, C. F., Wang, B., Hu, F. Y., Wang, Y. M., Zhang, B., Deng, S. G., & Wu, C. W. (2015). Purification and identification of three novel antioxidant peptides from protein hydrolysate of bluefin leatherjacket (Navodon septentrionalis) skin. Food Research International, 73:124-129.
- Cho, S. M., Gu, Y. S., & Kim, S. B. (2005). Extracting optimization and physical properties of yellowfin tuna (Thunnus albacares) skin gelatin compared to mammalian gelatins. Food Hydrocolloids, 19(2):221-229.
- Daliri, E. B. M., Oh, D. H., & Lee, B. H. (2017). Bioactive peptides. Foods, 6(5):1-21.
- Devita, L., Nurilmala, M., Lioe, H. N., & Suhartono, M. T. (2021). Chemical and antioxidant characteristics of skin-derived collagen obtained by acid-enzymatic hydrolysis of bigeye tuna (Thunnus obesus). Marine Drugs, 19(4):1-19.
- Estcourt, L. J., Desborough, M., Brunskill, S. J., Doree, C., Hopewell, S., Murphy, M. F., & Stanworth, S. J. (2016). Antifibrinolytics (lysine analogues) for the prevention of bleeding in people with haematological disorders. Cochrane Database of Systematic Reviews, (3):1-53.
- Fatemi, M. J., Garahgheshlagh, S. N., Ghadimi, T., Jamili, S., Nourani, M. R., Sharifi, A. M., Saberi, M., Amini, N., Sarmadi, V. H., & Yazdi-Amirkhiz, S. Y. (2021). Investigating the impact of collagen-chitosan derived from Scomberomorus guttatus and shrimp skin on second-degree burn in rats model. Regenerative Therapy, 18:12-20.
- Fonseca, R. A. S., Silva, C. M., Fernandes, G. R., & Prentice, C. (2016). Enzymatic hydrolysis of cobia (Rachycentron canadum) meat and wastes using different microbial enzymes. International Food Research Journal, 23(1):152-160.
- Gamarro, E., Orawattanamateekul, W., Sentina, J., & Gopal, S. (2013). By-products of tuna processing. Rome: Food and Agriculture Organization of the United Nations.
- Gonz, D. J., Hadidi, M., Varcheh, M., Jelyani, A. Z., Moreno, A., & Lorenzo, J. M. (2022). Bioactive peptide fractions from collagen hydrolysate of common carp fish by-product: antioxidant and functional properties. Antioxidants Article 2022, 11(3):1-11.
- Hadinoto, S., & Idrus, S. (2018). Proporsi dan kadar proksimat bagian tubuh ikan tuna ekor kuning (Thunnus albacares) dari perairan maluku. Majalah Biam, 14(2):51-57.
- Hadinoto, S., Kolanus, J. P. M., & Idrus, S. (2019). Characterization of swim bladder and its collagen of yellowfin tuna (Thunnus sp.) produced from acetic acid extraction. Jurnal Pascapanen dan Bioteknologi Kelautan dan Perikanan, 14(2):129-140.
- Hemung, B. (2013). Properties of Tilapia bone powder and its calcium bioavailability based on transglutaminase assay. International Journal of Bioscience, Biochemistry and Bioinformatics, 3(4):2-5.
- Henaux, L., Pereira, K. D., Thibodeau, J., Pilon, G., Gill, T., Marette, A., & Bazinet, L. (2021). Glucoregulatory and anti-inflammatory activities of peptide fractions separated by electrodialysis with ultrafiltration membranes from salmon protein hydrolysate and identification of four novel glucoregulatory peptides. Membranes, 11(7):1-16.
- Hierro, J. N. del, Cantero-bahillo, E., Fornari, T., & Martin, D. (2021). Effect of defatting and extraction solvent on the antioxidant and pancreatic lipase inhibitory activities of extracts from Hermetia illucens and Tenebrio molitor. Insects, 12(9):1-17.
- Hoyle, N. T., & Merritt, J. H. (1994). Quality of fish protein hydrolysates from herring (Clupea harengus). Journal of Food Science, 59(1):76-79.
- Hua, K. C., Feng, J. T., Yang, X. G., Wang, F., Zhang, H., Yang, L., Zhang, H. R., Xu, M. Y., Li, J. K., Qiao, R. Q., Lun, D. X., & Hu, Y. C. (2020). Assessment of the defatting efficacy of mechanical and chemical treatment for allograft cancellous bone and its effects on biomechanics properties of bone. Orthopaedic Surgery, 12(1):617-630.
- Huang, C. Y., Kuo, J. M., Wu, S. J., & Tsai, H. T. (2016). Isolation and characterization of fish scale collagen from tilapia (Oreochromis sp.) by a novel extrusion-hydro-extraction process. Food Chemistry, 190:997-1006.
- Irianto, H. E., & Akbarsyah, T. M. I. (2007). Pengalengan ikan tuna komersial. Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology, 2(2):43-50.
- Jeewanthi, R. K. C., Lee, N. K., & Paik, H. D. (2015). Improved functional characteristics of whey protein hydrolysates in food industry. Food Science of Animal Resources, 35(3):350-359.
- Jiang, Y., Yin, Z., Zhao, J., Sun, J., Zhao, D., Zeng, X. an, Li, H., Huang, M., & Wu, J. (2021). Antioxidant mechanism exploration of the tripeptide Val-Asn-Pro generated from Jiuzao and its potential application in baijiu. Food and Chemical Toxicology, 155:112402.
- Kaewdang, O., Benjakul, S., Kaewmanee, T., & Kishimura, H. (2014). Characteristics of collagens from the swim bladders of yellowfin tuna (Thunnus albacares). Food Chemistry, 155:264-270.
- Karnila, R., Dewita, Ilham, D., & Sidauruk, S. W. (2020). Utilization of papain enzymes in the production of protein hydrolysates of yellow pike conger (Congresox talabon). AACL Bioflux, 13(3):1285-1291.
- Karunarathna, K., & Attygalle, M. V. E. (2010). Nutritional evaluation in five species of tuna. Vidyodaya Journal Science, 15(1&2):7-16.
- Kiewiet, M. B. G., Dekkers, R., Ulfman, L. H., Groeneveld, A., De Vos, P., & Faas, M. M. (2018). Immunomodulating protein aggregates in soy and whey hydrolysates and their resistance to digestion in an in vitro infant gastrointestinal model: New insights in the mechanism of immunomodulatory hydrolysates. Food and Function, 9(1):604-613.
- Kementrian Kelautan dan Perikanan (KKP). (2020). Peluang usaha dan investasi tuna. Jakarta (ID): Kementrian Kelautan dan Perikanan.
- Komala, A. H., Suptijah, P., & Nurhayati, T. (2015). Ekstraksi dan karakterisasi kolagen dari kulit ikan tongkol (Euthynnus affinis). Bogor: Institut Pertanian Bogor.
- Kong, J., & Yu, S. (2007). Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochimica et Biophysica Sinica, 39(8):549-559.
- Kusumaningtyas, E., Nurilmala, M., & Sibarani, D. (2019). Antioxidant and antifungal activities of collagen hydrolysates from skin of milkfish (Chanos chanos) hydrolyzed using various Bacillus proteases. IOP Conference Series: Earth and Environmental Science, 278(012040):1-7.
- Laemmli. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 228:726-734.
- Li-Chan, E. C. Y. (2015). Bioactive peptides and protein hydrolysates: Research trends and challenges for application as nutraceuticals and functional food ingredients. Current Opinion in Food Science, 1(1):28-37.
- Lopera, L. M. S., Sepúlveda, C. T. R., Vásquez, M. P., Figueroa, O. A. M., & Zapata, J. E. M. (2018). By-products of aquaculture processes: Development and prospective uses. Review. Vitae, 25(3):128-140.
- Mahmoodani, F., Ghassem, M., Babji, A. S., Yusop, S. M., & Khosrokhavar, R. (2014). ACE inhibitory activity of pangasius catfish (Pangasius sutchi) skin and bone gelatin hydrolysate. Journal of Food Science and Technology, 51(9):1847-1856.
- Manoharan, S., Shuib, A. S., Abdullah, N., Mohamad, S. Bin, & Aminudin, N. (2017). Characterisation of novel angiotensin-I-converting enzyme inhibitory tripeptide, Gly-Val-Arg derived from mycelium of Pleurotus pulmonarius. Process Biochemistry, 62(07):215-222.
- Miguel, M., Aleixandre, M. A., Ramos, M., & López-Fandiño, R. (2006). Effect of simulated gastrointestinal digestion on the antihypertensive properties of ACE-inhibitory peptides derived from ovalbumin. Journal of Agricultural and Food Chemistry, 54(3):726-731.
- Mutaminah, D., Ibrahim, B., & Trilaksani, W. (2018). Aktivitas antioksidan hidrolisat protein mata ikan tuna (Thunnus sp.) dengan hidrolisis enzimatik. Bogor: Institut Pertanian Bogor.
- Naik, A. S., Whitaker, R. D., Albrektsen, S., Solstad, R. G., Thoresen, L., & Hayes, M. (2021). Mesopelagic fish protein hydrolysates and extracts: a source of novel anti-hypertensive and anti-diabetic peptides. Frontiers in Marine Science, 8(09):1-9.
- Nilsuwan, K., Chantakun, K., Chotphruethipong, L., Benjakul, S. (2021). Development of hydrolysis and defatting processes for production of lowered fishy odor hydrolyzed collagen from fatty skin of sockeye salmon (Oncorhynchus nerka). Foods, 10(10):1-16.
- Nurilmala, M., Hizbullah, H. H., Karnia, E., Kusumaningtyas, E., & Ochiai, Y. (2020). Characterization and antioxidant activity of collagen, gelatin, and the derived peptides from yellowfin tuna (Thunnus albacares) skin. Marine Drugs, 18(2):1-12.
- Nurilmala, M., Pertiwi, R. M., Nurhayati, T., Fauzi, S., Batubara, I., & Ochiai, Y. (2019). Characterization of collagen and its hydrolysate from yellowfin tuna Thunnus albacares skin and their potencies as antioxidant and antiglycation agents. Fisheries Science, 85(3):591-599.
- Nurjanah, Baharuddin, T. I., & Nurhayati, T. (2021). Ekstraksi kolagen kulit ikan tuna sirip kuni (Thunnus albacares) menggunakan enzim pepsin dan papain. Jurnal Pengolahan Hasil Perikanan Indonesia, 24(2):174-187.
- Oyaizu, M. (1988). Antioxidative activities of browning products of glucosamine fractionated by organic solvent and thin-layer chromatography. Nippon Shokuhin Kogyo Gakkaishi, 35:771-775.
- Prastyo, D.T. (2021). Aktivitas antioksidan dan inhibitor enzim pengubah angiotensin (ACE) hidrolisat kolagen kulit ikan nila (Oreochromis niloticus). Bogor: Institut Pertanian Bogor.
- Prastyo, D. T., Trilaksani, W., & Nurjanah. (2020). Aktivitas antioksidan hidrolisat klagen kulit ikan nila (Oreochromis niloticus). Jurnal Pengolahan Hasil Perikanan Indonesia, 23(3):423-433.
- Pezeshk, S., Ojagh, S. M., Rezaei, M., & Shabanpour, B. (2019). Fractionation of protein hydrolysates of fish waste using membrane ultrafiltration: investigation of antibacterial and antioxidant activities. Probiotics and Antimicrobial Proteins, 11(3):1015-1022.
- Porto, H. L. R., de Castro, A. C. L., Filho, V. E. M., & Rádis-Baptista, G. (2016). Evaluation of the chemical composition of fish species captured in the lower stretch of Itapecuru river, Maranhí£o, Brazil. International Journal of Advances in Agricultural and Environmental Engineering, 3(1):181-186.
- Qiu, Y. T., Wang, Y. M., Yang, X. R., Zhao, Y. Q., Chi, C. F., & Wang, B. (2019). Gelatin and antioxidant peptides from gelatin hydrolysate of skipjack tuna (Katsuwonus pelamis) scales: Preparation, identification and activity evaluation. Marine Drugs, 17(10):1-16.
- Ramadhan, W., Santoso, J., & Trilaksani, W. (2014). Pengaruh defatting, frekuensi pencucian dan jenis dryoprotectant terhadap mutu tepung surimi ikan lele kering beku. Jurnal Teknologi dan Industri Pangan, 25(1):47-56.
- Rasli, H. I., & Sarbon, N. M. (2019). Preparation and physicochemical characterization of fish skin gelatine hydrolysate from shortfin scad (Decapterus macrosoma). International Food Research Journal, 26(1):287-294.
- Rothwell, P. A. H., Khatib, N., Sharkey, S., Lafferty, R. A., Gite, S., Whooley, J., O'harte, F. P. M., & Fitzgerald, R. J. (2021). Physicochemical, nutritional and in vitro antidiabetic characterisation of blue whiting (Micromesistius poutassou) protein hydrolysates. Marine Drugs, 19(7)1-16.
- Sae-leaw, T., Benjakul, S., & O'Brien, N. M. (2016). Effects of defatting and tannic acid incorporation during extraction on properties and fishy odour of gelatin from seabass skin. LWT – Food Science and Technology, 65:661-667.
- Sánchez-Zapata, E., Amensour, M., Oliver, R., Fuentes-Zaragoza, E., Fernández-López, J., Sendra, E., Sayas, E., & Pérez-alvarez, J. A. (2011). Quality characteristics of dark muscle from yellowfin tuna (Thunnus albacares) to its potential application in the food industry. Food and Nutrition Sciences, 2011(January):22-30.
- Schmidt, M. M., Da Fontoura, A. M., Vidal, A. R., Dornelles, R. C. P., Kubota, E. H., Mello, R. de O., Cansian, R. L., Demiate, I. M., & De Oliveira, C. S. (2020). Characterization of hydrolysates of collagen from mechanically separated chicken meat residue. Food Science and Technology, 40(Suppl. 1):355-362.
- Shu, G., Huang, J., Bao, C., Meng, J., Chen, H., & Cao, J. (2018). Effect of different proteases on the degree of hydrolysis and angiotensin I-converting enzyme-inhibitory activity in goat and cow milk. Biomolecules, 8(4)1-8.
- Suetsuna, K., Ukeda, H., & Ochi, H. (2000). Isolation and characterization of free radical scavenging activities peptides derived from casein. Journal of Nutritional Biochemistry, 11(3):128-131.
- Saraswati Indo Genetech Laboratory. (SIG). (2021). Metode uji asam amino (UPLC). Bogor: Saraswati Indo Genetech Laboratory.
- Songchotikunpan, P., Tattiyakul, J., & Supaphol, P. (2008). Extraction and electrospinning of gelatin from fish skin. International Journal of Biological Macromolecules, 42(3):247-255.
- Stämpfli, R., Brühwiler, P., Mourad, S., Verdejo, R., & Shaffer, M. (2007). Development and characterisation of carbon nanotube-reinforced polyurethane foams. Original Contribution, 26(2007):51.
- Suseno, H. S. (2015). Proximate, fatty acid, and mineral composition of tuna (Thunnus sp.) by-product from West Sumatra Province, Indonesia. Pakistan Journal of Nutrition, 14(1):62-66.
- Tkaczewska, J., Borawska-Dziadkiewicz, J., Kulawik, P., Duda, I., Morawska, M., & Mickowska, B. (2020). The effects of hydrolysis condition on the antioxidant activity of protein hydrolysate from Cyprinus carpio skin gelatin. Food Science and Technology, 117:108616.
- Venuste, M., Zhang, X., Shoemaker, C. F., Karangwa, E., Abbas, S., & Kamdem, P. E. (2013). Influence of enzymatic hydrolysis and enzyme type on the nutritional and antioxidant properties of pumpkin meal hydrolysates. Food and Function, 4(5):811-820.
- Vijaykrishnaraj, M., Roopa, B. S., & Prabhasankar, P. (2016). Preparation of gluten free bread enriched with green mussel (Perna canaliculus) protein hydrolysates and characterization of peptides responsible for mussel flavour. Food Chemistry, 211:715-725.
- Wiriyaphan, C., Chitsomboon, B., & Yongsawadigul, J. (2012). Antioxidant activity of protein hydrolysates derived from threadfin bream surimi byproducts. Food Chemistry, 132(1):104-111.
- Witono, Y., Fauziah, R. R., Windrati, W. S., Taruna, I., Azkiyah, L., & Wijayanti, R. P. (2019). Formulation of flavor enhancer from common barb (Rasbora jacobsoni) protein hydrolysate. AIP Conference Proceedings, 2199(1):1-11.
- Wu, H. C., Chen, H. M., & Shiau, C. Y. (2003). Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Research International, 36(9–10):949-957.
- Xu, S., Yang, H., Shen, L., & Li, G. (2017). Purity and yield of collagen extracted from southern catfish (Silurus meridionalis Chen) skin through improved pretreatment methods. International Journal of Food Properties, 20(sup1):S141-S153.
- Yaghoubzadeh, Z., Peyravii Ghadikolaii, F., Kaboosi, H., Safari, R., & Fattahi, E. (2020). Antioxidant activity and anticancer effect of bioactive peptides from rainbow trout (Oncorhynchus mykiss) skin hydrolysate. International Journal of Peptide Research and Therapeutics, 26(1):625-632.
References
Association of Analytical Chemist Publisher (AOAC). (2005). Official methods of analysis of the association of official analysis chemist. Arlington Virginia (US): The Association of Official Analytical Chemist, Inc.
Agustin, V., Husni, A., & Putra, M.M.P. (2021). Antioxidant activity of protein hydrolysate from snakehead fish (Channa striata) viscera obtained by enzymatic process. IOP Conf Series: Earth and Environmental Science, 919(012046):1-7.
Alahmad, K., Xia, W., Jiang, Q., & Xu, Y. (2022). Effect of the degree of hydrolysis on nutritional, functional, and morphological characteristics of protein hydrolysate produced from bighead carp (Hypophthalmichthys nobilis) using ficin enzyme. Foods, 11(9):1-17.
Arlina, H., Santoso, J., Desniar. (2019). Aktivitas antioksidan hidrolisat protein miofibril belut (Synbranchus bengalensis) yang dihidrolisis dengan enzim papain. Jurnal Teknologi Industri Pertanian, 29(3):247-259.
Asmak, N., Kusmiyati-Tjahjono, D. K., Chasanah, E., Fawzya, Y. N., Martosuyono, P., Nuryanto, & Afifah, D.N. (2020). The effect of fish protein hydrolysate (FPH) substitution complementary feeding formula on the albumin levels of Sprague Dawley rat. Food Research, 4(Suppl. 3):18-23.
Baco, N., Oslan, S. N. H., Shapawi, R., Mohhtar, R. A. M., Noordin, W. N. M., & Huda, N. (2022). Antibacterial activity of functional bioactive peptides derived from fish protein hydrolysate. IOP Conference Series: Earth and Environmental Science, 967(012019):1-12.
Baehaki, A., Widiastuti, I., Nainggolan, C., & Gofar, N. (2020). Antioxidant activities of snakehead (Channa striata) fish skin: Peptides hydrolysis using protease TP2 isolate from swamp plant silage. Slovak Journal of Food Sciences, 14:379-384.
Bahurmiz M. (2019). Proximate and fatty acid composition of three tuna species from Hadhramout coast of the Arabian Sea, Yemen. Hadhramout University Journal of Natural & Applied Sciences, 16(1):63-71.
Bi, C., Li, X., Xin, Q., Han, W., Shi, C., Guo, R., Shi, W., Qiao, R., Wang, X., & Zhong, J. (2019). Effect of extraction methods on the preparation of electrospun/electrosprayed microstructures of Tilapia skin collagen. Journal of Bioscience and Bioengineering, 128(2):234-240.
Blanco, M., Vázquez, J. A., Pérez-Martín, R. I., & Sotelo, C. G. (2017). Hydrolysates of fish skin collagen: An opportunity for valorizing fish industry by-products. Marine Drugs, 15(5)1-15.
Chen, X. X., Hu, X., Li, L. H., Yang, X. Q., Wu, Y. Y., Lin, W. L., Zhao, Y. Q., Ma, H. X., & Wei, Y. (2014). Antioxidant properties of Tilapia component protein hydrolysates and the membrane ultrafiltration fractions. Advanced Materials Research, 1812-1817.
Chi, C. F., Wang, B., Hu, F. Y., Wang, Y. M., Zhang, B., Deng, S. G., & Wu, C. W. (2015). Purification and identification of three novel antioxidant peptides from protein hydrolysate of bluefin leatherjacket (Navodon septentrionalis) skin. Food Research International, 73:124-129.
Cho, S. M., Gu, Y. S., & Kim, S. B. (2005). Extracting optimization and physical properties of yellowfin tuna (Thunnus albacares) skin gelatin compared to mammalian gelatins. Food Hydrocolloids, 19(2):221-229.
Daliri, E. B. M., Oh, D. H., & Lee, B. H. (2017). Bioactive peptides. Foods, 6(5):1-21.
Devita, L., Nurilmala, M., Lioe, H. N., & Suhartono, M. T. (2021). Chemical and antioxidant characteristics of skin-derived collagen obtained by acid-enzymatic hydrolysis of bigeye tuna (Thunnus obesus). Marine Drugs, 19(4):1-19.
Estcourt, L. J., Desborough, M., Brunskill, S. J., Doree, C., Hopewell, S., Murphy, M. F., & Stanworth, S. J. (2016). Antifibrinolytics (lysine analogues) for the prevention of bleeding in people with haematological disorders. Cochrane Database of Systematic Reviews, (3):1-53.
Fatemi, M. J., Garahgheshlagh, S. N., Ghadimi, T., Jamili, S., Nourani, M. R., Sharifi, A. M., Saberi, M., Amini, N., Sarmadi, V. H., & Yazdi-Amirkhiz, S. Y. (2021). Investigating the impact of collagen-chitosan derived from Scomberomorus guttatus and shrimp skin on second-degree burn in rats model. Regenerative Therapy, 18:12-20.
Fonseca, R. A. S., Silva, C. M., Fernandes, G. R., & Prentice, C. (2016). Enzymatic hydrolysis of cobia (Rachycentron canadum) meat and wastes using different microbial enzymes. International Food Research Journal, 23(1):152-160.
Gamarro, E., Orawattanamateekul, W., Sentina, J., & Gopal, S. (2013). By-products of tuna processing. Rome: Food and Agriculture Organization of the United Nations.
Gonz, D. J., Hadidi, M., Varcheh, M., Jelyani, A. Z., Moreno, A., & Lorenzo, J. M. (2022). Bioactive peptide fractions from collagen hydrolysate of common carp fish by-product: antioxidant and functional properties. Antioxidants Article 2022, 11(3):1-11.
Hadinoto, S., & Idrus, S. (2018). Proporsi dan kadar proksimat bagian tubuh ikan tuna ekor kuning (Thunnus albacares) dari perairan maluku. Majalah Biam, 14(2):51-57.
Hadinoto, S., Kolanus, J. P. M., & Idrus, S. (2019). Characterization of swim bladder and its collagen of yellowfin tuna (Thunnus sp.) produced from acetic acid extraction. Jurnal Pascapanen dan Bioteknologi Kelautan dan Perikanan, 14(2):129-140.
Hemung, B. (2013). Properties of Tilapia bone powder and its calcium bioavailability based on transglutaminase assay. International Journal of Bioscience, Biochemistry and Bioinformatics, 3(4):2-5.
Henaux, L., Pereira, K. D., Thibodeau, J., Pilon, G., Gill, T., Marette, A., & Bazinet, L. (2021). Glucoregulatory and anti-inflammatory activities of peptide fractions separated by electrodialysis with ultrafiltration membranes from salmon protein hydrolysate and identification of four novel glucoregulatory peptides. Membranes, 11(7):1-16.
Hierro, J. N. del, Cantero-bahillo, E., Fornari, T., & Martin, D. (2021). Effect of defatting and extraction solvent on the antioxidant and pancreatic lipase inhibitory activities of extracts from Hermetia illucens and Tenebrio molitor. Insects, 12(9):1-17.
Hoyle, N. T., & Merritt, J. H. (1994). Quality of fish protein hydrolysates from herring (Clupea harengus). Journal of Food Science, 59(1):76-79.
Hua, K. C., Feng, J. T., Yang, X. G., Wang, F., Zhang, H., Yang, L., Zhang, H. R., Xu, M. Y., Li, J. K., Qiao, R. Q., Lun, D. X., & Hu, Y. C. (2020). Assessment of the defatting efficacy of mechanical and chemical treatment for allograft cancellous bone and its effects on biomechanics properties of bone. Orthopaedic Surgery, 12(1):617-630.
Huang, C. Y., Kuo, J. M., Wu, S. J., & Tsai, H. T. (2016). Isolation and characterization of fish scale collagen from tilapia (Oreochromis sp.) by a novel extrusion-hydro-extraction process. Food Chemistry, 190:997-1006.
Irianto, H. E., & Akbarsyah, T. M. I. (2007). Pengalengan ikan tuna komersial. Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology, 2(2):43-50.
Jeewanthi, R. K. C., Lee, N. K., & Paik, H. D. (2015). Improved functional characteristics of whey protein hydrolysates in food industry. Food Science of Animal Resources, 35(3):350-359.
Jiang, Y., Yin, Z., Zhao, J., Sun, J., Zhao, D., Zeng, X. an, Li, H., Huang, M., & Wu, J. (2021). Antioxidant mechanism exploration of the tripeptide Val-Asn-Pro generated from Jiuzao and its potential application in baijiu. Food and Chemical Toxicology, 155:112402.
Kaewdang, O., Benjakul, S., Kaewmanee, T., & Kishimura, H. (2014). Characteristics of collagens from the swim bladders of yellowfin tuna (Thunnus albacares). Food Chemistry, 155:264-270.
Karnila, R., Dewita, Ilham, D., & Sidauruk, S. W. (2020). Utilization of papain enzymes in the production of protein hydrolysates of yellow pike conger (Congresox talabon). AACL Bioflux, 13(3):1285-1291.
Karunarathna, K., & Attygalle, M. V. E. (2010). Nutritional evaluation in five species of tuna. Vidyodaya Journal Science, 15(1&2):7-16.
Kiewiet, M. B. G., Dekkers, R., Ulfman, L. H., Groeneveld, A., De Vos, P., & Faas, M. M. (2018). Immunomodulating protein aggregates in soy and whey hydrolysates and their resistance to digestion in an in vitro infant gastrointestinal model: New insights in the mechanism of immunomodulatory hydrolysates. Food and Function, 9(1):604-613.
Kementrian Kelautan dan Perikanan (KKP). (2020). Peluang usaha dan investasi tuna. Jakarta (ID): Kementrian Kelautan dan Perikanan.
Komala, A. H., Suptijah, P., & Nurhayati, T. (2015). Ekstraksi dan karakterisasi kolagen dari kulit ikan tongkol (Euthynnus affinis). Bogor: Institut Pertanian Bogor.
Kong, J., & Yu, S. (2007). Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochimica et Biophysica Sinica, 39(8):549-559.
Kusumaningtyas, E., Nurilmala, M., & Sibarani, D. (2019). Antioxidant and antifungal activities of collagen hydrolysates from skin of milkfish (Chanos chanos) hydrolyzed using various Bacillus proteases. IOP Conference Series: Earth and Environmental Science, 278(012040):1-7.
Laemmli. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 228:726-734.
Li-Chan, E. C. Y. (2015). Bioactive peptides and protein hydrolysates: Research trends and challenges for application as nutraceuticals and functional food ingredients. Current Opinion in Food Science, 1(1):28-37.
Lopera, L. M. S., Sepúlveda, C. T. R., Vásquez, M. P., Figueroa, O. A. M., & Zapata, J. E. M. (2018). By-products of aquaculture processes: Development and prospective uses. Review. Vitae, 25(3):128-140.
Mahmoodani, F., Ghassem, M., Babji, A. S., Yusop, S. M., & Khosrokhavar, R. (2014). ACE inhibitory activity of pangasius catfish (Pangasius sutchi) skin and bone gelatin hydrolysate. Journal of Food Science and Technology, 51(9):1847-1856.
Manoharan, S., Shuib, A. S., Abdullah, N., Mohamad, S. Bin, & Aminudin, N. (2017). Characterisation of novel angiotensin-I-converting enzyme inhibitory tripeptide, Gly-Val-Arg derived from mycelium of Pleurotus pulmonarius. Process Biochemistry, 62(07):215-222.
Miguel, M., Aleixandre, M. A., Ramos, M., & López-Fandiño, R. (2006). Effect of simulated gastrointestinal digestion on the antihypertensive properties of ACE-inhibitory peptides derived from ovalbumin. Journal of Agricultural and Food Chemistry, 54(3):726-731.
Mutaminah, D., Ibrahim, B., & Trilaksani, W. (2018). Aktivitas antioksidan hidrolisat protein mata ikan tuna (Thunnus sp.) dengan hidrolisis enzimatik. Bogor: Institut Pertanian Bogor.
Naik, A. S., Whitaker, R. D., Albrektsen, S., Solstad, R. G., Thoresen, L., & Hayes, M. (2021). Mesopelagic fish protein hydrolysates and extracts: a source of novel anti-hypertensive and anti-diabetic peptides. Frontiers in Marine Science, 8(09):1-9.
Nilsuwan, K., Chantakun, K., Chotphruethipong, L., Benjakul, S. (2021). Development of hydrolysis and defatting processes for production of lowered fishy odor hydrolyzed collagen from fatty skin of sockeye salmon (Oncorhynchus nerka). Foods, 10(10):1-16.
Nurilmala, M., Hizbullah, H. H., Karnia, E., Kusumaningtyas, E., & Ochiai, Y. (2020). Characterization and antioxidant activity of collagen, gelatin, and the derived peptides from yellowfin tuna (Thunnus albacares) skin. Marine Drugs, 18(2):1-12.
Nurilmala, M., Pertiwi, R. M., Nurhayati, T., Fauzi, S., Batubara, I., & Ochiai, Y. (2019). Characterization of collagen and its hydrolysate from yellowfin tuna Thunnus albacares skin and their potencies as antioxidant and antiglycation agents. Fisheries Science, 85(3):591-599.
Nurjanah, Baharuddin, T. I., & Nurhayati, T. (2021). Ekstraksi kolagen kulit ikan tuna sirip kuni (Thunnus albacares) menggunakan enzim pepsin dan papain. Jurnal Pengolahan Hasil Perikanan Indonesia, 24(2):174-187.
Oyaizu, M. (1988). Antioxidative activities of browning products of glucosamine fractionated by organic solvent and thin-layer chromatography. Nippon Shokuhin Kogyo Gakkaishi, 35:771-775.
Prastyo, D.T. (2021). Aktivitas antioksidan dan inhibitor enzim pengubah angiotensin (ACE) hidrolisat kolagen kulit ikan nila (Oreochromis niloticus). Bogor: Institut Pertanian Bogor.
Prastyo, D. T., Trilaksani, W., & Nurjanah. (2020). Aktivitas antioksidan hidrolisat klagen kulit ikan nila (Oreochromis niloticus). Jurnal Pengolahan Hasil Perikanan Indonesia, 23(3):423-433.
Pezeshk, S., Ojagh, S. M., Rezaei, M., & Shabanpour, B. (2019). Fractionation of protein hydrolysates of fish waste using membrane ultrafiltration: investigation of antibacterial and antioxidant activities. Probiotics and Antimicrobial Proteins, 11(3):1015-1022.
Porto, H. L. R., de Castro, A. C. L., Filho, V. E. M., & Rádis-Baptista, G. (2016). Evaluation of the chemical composition of fish species captured in the lower stretch of Itapecuru river, Maranhí£o, Brazil. International Journal of Advances in Agricultural and Environmental Engineering, 3(1):181-186.
Qiu, Y. T., Wang, Y. M., Yang, X. R., Zhao, Y. Q., Chi, C. F., & Wang, B. (2019). Gelatin and antioxidant peptides from gelatin hydrolysate of skipjack tuna (Katsuwonus pelamis) scales: Preparation, identification and activity evaluation. Marine Drugs, 17(10):1-16.
Ramadhan, W., Santoso, J., & Trilaksani, W. (2014). Pengaruh defatting, frekuensi pencucian dan jenis dryoprotectant terhadap mutu tepung surimi ikan lele kering beku. Jurnal Teknologi dan Industri Pangan, 25(1):47-56.
Rasli, H. I., & Sarbon, N. M. (2019). Preparation and physicochemical characterization of fish skin gelatine hydrolysate from shortfin scad (Decapterus macrosoma). International Food Research Journal, 26(1):287-294.
Rothwell, P. A. H., Khatib, N., Sharkey, S., Lafferty, R. A., Gite, S., Whooley, J., O'harte, F. P. M., & Fitzgerald, R. J. (2021). Physicochemical, nutritional and in vitro antidiabetic characterisation of blue whiting (Micromesistius poutassou) protein hydrolysates. Marine Drugs, 19(7)1-16.
Sae-leaw, T., Benjakul, S., & O'Brien, N. M. (2016). Effects of defatting and tannic acid incorporation during extraction on properties and fishy odour of gelatin from seabass skin. LWT – Food Science and Technology, 65:661-667.
Sánchez-Zapata, E., Amensour, M., Oliver, R., Fuentes-Zaragoza, E., Fernández-López, J., Sendra, E., Sayas, E., & Pérez-alvarez, J. A. (2011). Quality characteristics of dark muscle from yellowfin tuna (Thunnus albacares) to its potential application in the food industry. Food and Nutrition Sciences, 2011(January):22-30.
Schmidt, M. M., Da Fontoura, A. M., Vidal, A. R., Dornelles, R. C. P., Kubota, E. H., Mello, R. de O., Cansian, R. L., Demiate, I. M., & De Oliveira, C. S. (2020). Characterization of hydrolysates of collagen from mechanically separated chicken meat residue. Food Science and Technology, 40(Suppl. 1):355-362.
Shu, G., Huang, J., Bao, C., Meng, J., Chen, H., & Cao, J. (2018). Effect of different proteases on the degree of hydrolysis and angiotensin I-converting enzyme-inhibitory activity in goat and cow milk. Biomolecules, 8(4)1-8.
Suetsuna, K., Ukeda, H., & Ochi, H. (2000). Isolation and characterization of free radical scavenging activities peptides derived from casein. Journal of Nutritional Biochemistry, 11(3):128-131.
Saraswati Indo Genetech Laboratory. (SIG). (2021). Metode uji asam amino (UPLC). Bogor: Saraswati Indo Genetech Laboratory.
Songchotikunpan, P., Tattiyakul, J., & Supaphol, P. (2008). Extraction and electrospinning of gelatin from fish skin. International Journal of Biological Macromolecules, 42(3):247-255.
Stämpfli, R., Brühwiler, P., Mourad, S., Verdejo, R., & Shaffer, M. (2007). Development and characterisation of carbon nanotube-reinforced polyurethane foams. Original Contribution, 26(2007):51.
Suseno, H. S. (2015). Proximate, fatty acid, and mineral composition of tuna (Thunnus sp.) by-product from West Sumatra Province, Indonesia. Pakistan Journal of Nutrition, 14(1):62-66.
Tkaczewska, J., Borawska-Dziadkiewicz, J., Kulawik, P., Duda, I., Morawska, M., & Mickowska, B. (2020). The effects of hydrolysis condition on the antioxidant activity of protein hydrolysate from Cyprinus carpio skin gelatin. Food Science and Technology, 117:108616.
Venuste, M., Zhang, X., Shoemaker, C. F., Karangwa, E., Abbas, S., & Kamdem, P. E. (2013). Influence of enzymatic hydrolysis and enzyme type on the nutritional and antioxidant properties of pumpkin meal hydrolysates. Food and Function, 4(5):811-820.
Vijaykrishnaraj, M., Roopa, B. S., & Prabhasankar, P. (2016). Preparation of gluten free bread enriched with green mussel (Perna canaliculus) protein hydrolysates and characterization of peptides responsible for mussel flavour. Food Chemistry, 211:715-725.
Wiriyaphan, C., Chitsomboon, B., & Yongsawadigul, J. (2012). Antioxidant activity of protein hydrolysates derived from threadfin bream surimi byproducts. Food Chemistry, 132(1):104-111.
Witono, Y., Fauziah, R. R., Windrati, W. S., Taruna, I., Azkiyah, L., & Wijayanti, R. P. (2019). Formulation of flavor enhancer from common barb (Rasbora jacobsoni) protein hydrolysate. AIP Conference Proceedings, 2199(1):1-11.
Wu, H. C., Chen, H. M., & Shiau, C. Y. (2003). Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Research International, 36(9–10):949-957.
Xu, S., Yang, H., Shen, L., & Li, G. (2017). Purity and yield of collagen extracted from southern catfish (Silurus meridionalis Chen) skin through improved pretreatment methods. International Journal of Food Properties, 20(sup1):S141-S153.
Yaghoubzadeh, Z., Peyravii Ghadikolaii, F., Kaboosi, H., Safari, R., & Fattahi, E. (2020). Antioxidant activity and anticancer effect of bioactive peptides from rainbow trout (Oncorhynchus mykiss) skin hydrolysate. International Journal of Peptide Research and Therapeutics, 26(1):625-632.