Date Log
Copyright (c) 2024 Jurnal Ilmiah Perikanan dan Kelautan
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
1. Copyright of the article is transferred to the journal, by the knowledge of the author, whilst the moral right of the publication belongs to the author.
2. The legal formal aspect of journal publication accessibility refers to Creative Commons Atribusi-Non Commercial-Share alike (CC BY-NC-SA), (https://creativecommons.org/licenses/by-nc-sa/4.0/)
3. The articles published in the journal are open access and can be used for non-commercial purposes. Other than the aims mentioned above, the editorial board is not responsible for copyright violation
The manuscript authentic and copyright statement submission can be downloaded ON THIS FORM.
Organochlorine Exposure Influences the Cellular Morphology of Red Algae Eucheuma denticulatum (N.L. Burman) Collins & Hervey, 1917
Corresponding Author(s) : Sipriana Tumembow
Jurnal Ilmiah Perikanan dan Kelautan, 2024: IN PRESS ISSUE (JUST ACCEPTED MANUSCRIPT, 2024)
Abstract
Higlight Research
The research demonstrates the negative impact of organochlorine content on the morphological structure and biomineral composition of E. denticulatum, highlighting the need for effective measures to prevent and reduce organochlorine pollution in marine environments. Further research could focus on specific mechanisms of organochlorine toxicity and potential remediation strategies.
Abstract
Organochlorine compounds not only pollute marine waters but also interfere with the survival of marine biota. Organochlorine compounds absorbed by organisms disrupt metabolism and inhibit cellular functions. The implication of this research is to prevent and reduce the disposal of organochlorines into the environment because they can accumulate in soil, water, and air, remaining for years in the environment. This accumulation can affect food chains and negatively affect ecosystems and marine animals.This research aimed to investigate the impact of organochlorine content on the surface morphology and biomineral characteristics of the red alga E. denticulatum cells. Electron Microscope (SEM) analysis was used to observe particle morphology surfaces down to 1 nm, while Energy Dispersive Spectroscopy (EDS) was used to analyze the specimens' element composition and chemical characteristics. Energy Dispersive Spectroscopy (EDS) analysis revealed that red algae had the highest content of Chlorine (Cl) at 57.20%, followed by Sodium (Na) at 34.84%, Oxygen (O) at 5.21%, Calcium (Ca) at 1.64%, and the lowest element being Sulfur (S) at 1.11%. Overall, this research demonstrates the negative impact of organochlorine content on the morphological structure and biomineral composition of E. denticulatum, highlighting the need for effective measures to prevent and reduce organochlorine pollution in marine environments. Further research could focus on specific mechanisms of organochlorine toxicity and potential remediation strategies.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Anasco, N. C., Koyama, J., & Uno, S. (2010). Pesticide residues in coastal waters affected by rice paddy effluents temporarily stored in a wastewater reservoir in Southern Japan. Archives of Environmental Contamination and Toxicology, 58(1):352-360.
- Aguayo-Quiroz, C. E., Leyva-Morales, J. B., Bastidas-Bastidas, P. J., Cruz-Acevedo, E., Zambrano-Soria, M., Granodes-Amores, J., Perea-Domingues, X. P., Soto-Alcala, J., Martinez-Alvarez, I. G., Salvatierra, V. D. C. Barreras-Serrano, A., & Gonzales-Marquez, L. C. (2020). Organochlorine pesticides in commercial fish species of the southeastern Gulf of California. Chemosphere, 257(1):1-32.
- Arias, A. H., & Botte, S. E. (Eds.). (2020). Coastal and deep ocean pollution. London: CRC Press.
- Burkow, I. C., & Kallenborn, R. (2000). Sources and transport of persistent pollutants to the Arctic. Toxicology Letters, 15(1):87-92.
- Charurvedi, S., & Dave, P. (2012). Microscopy in nanotechnology. Formatex, 946-952.
- Chung I. K., Sondak, C. F. A., & Beardall, J. (2017). The future of seaweed aquaculture in a rapidly changing world. European Journal of Phycology, 52(1):495-505.
- Ebenezer, V., & Ki, J. S. (2014). Quantification of toxic effects of organochlorine insecticide endosulfan on marine green algae, diatom, and dinoflagellate. Indian Journal of Geo-Marine Sciences, 43(3):393-399.
- Gaston, C. P. (1994). Pesticide regulatory policies of selected countries in Asia. In: Technical Report No. 2. Bethesda, Maryland: Regional Agribusiness Project - RAP.
- Handini F R, Amin A dan Aguston. (2013). Effect Of Organochlorines (Endosulfan) Contaminated Medium on Content of Gelatin and Thallus Morphology Gracilaria verrucosa. Jurnal Ilmiah Perikanan dan Kelautan, 5(1):55-60.
- Hu, L., Zhang, G., Zheng, B., Qi, Y. N., Lin, T., & Guo, Z. (2009). Occurrence and distribution of organochlorine pesticides (OCPs) in surface sediments of the Bohai Sea, China. Chemosphere, 77(5):663-672.
- Jayaraj, R., Megha, P., & Sreedev, P. (2016). Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdisciplinary Toxicology, 9(3):90-100.
- Kepel, R. C., Lumingas, L. J. L., Tombokan, J. L., Desy, M. H., & Mantiri, D. M. H. (2021). Biomineral characterization and phytochemical profile of green algae Halimeda macroloba and Halimeda opuntia from coastal waters of Tanjung Merah, Bitung City, North Sulawesi, Indonesia. AACL Bioflux, 14(6):3217-3230.
- Neilson, A. H., Allard, A. S., Hynning, P. A., & Remberger, M. (1991). Distribution, fate and persistence of organochlorine compounds formed during the production of bleached pulp. Toxicological & Environmental Chemistry, 30(1):3-41.
- Nunes, L. M. (2022). Organochlorine compounds in beached plastics and marine organisms. Frontiers in Environmental Science, 9(784317):1-13.
- Perez, D. J., Iturburu, F. G., Calderon, G., Oyesqui, L. A., De Gerónimo, E., & Aparicio, V. C. (2021). Ecological risk assessment of current-use pesticides and biocides in soils, sediments, and surface water of a mixed land-use basin of the Pampas region, Argentina. Chemosphere, 263(1):1-14.
- Shahid, M., Manoharadas, S., Altaf, M., & Alrefaei, A.F. (2021). Organochlorine pesticides negatively influenced the cellular growth, morphostructure, cell viability, biofilm-formation, and phosphate-solubilization activities of Enterobacter cloacae strain EAM 35. ACS Omega, 6(8):5548-5559.
- Singkoh, M. F., Mantiri, D. M. H., Lumenta, C., & Manoppo, H. (2019). Biomineral characterization and antibacterial activity of marine algae Tricleocarpa fragilis from Kora-Kora coastal waters of Minahasa Regency, Indonesia. AACL Bioflux, 12(5):1814-1822.
- Sundhar, S., Jeyashakila, R., Jeyasekaran, G., Aanand, S., & Shalini, R. (2020). Assessment of organochlorine pesticides in different seaweed species of Thoothukudi coast, Tamil Nadu, South India. Indian Journal Fish, 68(2):148-153.
- Tang, C. Y., & Yang, Z. (2017). Transmission electron microscopy (TEM). In Membrane characterization (pp. 145-159). Elsevier.
- Tudi, M., Daniel, R. H., Wang, L., Lyu, J., Sadler, R., Connell, D., & Phung, D. T. (2021). Agriculture development, pesticide application and its impact on the environment. International Journal of Environmental Research and Public Health, 18(3):1-23.
- Vagi, M. C., Petsas, A. S., & Kostopoulou, M. N. (2021). Potential effects of persistent organic contaminants on marine biota: a review on recent research. Water, 13(18):1-35.
References
Anasco, N. C., Koyama, J., & Uno, S. (2010). Pesticide residues in coastal waters affected by rice paddy effluents temporarily stored in a wastewater reservoir in Southern Japan. Archives of Environmental Contamination and Toxicology, 58(1):352-360.
Aguayo-Quiroz, C. E., Leyva-Morales, J. B., Bastidas-Bastidas, P. J., Cruz-Acevedo, E., Zambrano-Soria, M., Granodes-Amores, J., Perea-Domingues, X. P., Soto-Alcala, J., Martinez-Alvarez, I. G., Salvatierra, V. D. C. Barreras-Serrano, A., & Gonzales-Marquez, L. C. (2020). Organochlorine pesticides in commercial fish species of the southeastern Gulf of California. Chemosphere, 257(1):1-32.
Arias, A. H., & Botte, S. E. (Eds.). (2020). Coastal and deep ocean pollution. London: CRC Press.
Burkow, I. C., & Kallenborn, R. (2000). Sources and transport of persistent pollutants to the Arctic. Toxicology Letters, 15(1):87-92.
Charurvedi, S., & Dave, P. (2012). Microscopy in nanotechnology. Formatex, 946-952.
Chung I. K., Sondak, C. F. A., & Beardall, J. (2017). The future of seaweed aquaculture in a rapidly changing world. European Journal of Phycology, 52(1):495-505.
Ebenezer, V., & Ki, J. S. (2014). Quantification of toxic effects of organochlorine insecticide endosulfan on marine green algae, diatom, and dinoflagellate. Indian Journal of Geo-Marine Sciences, 43(3):393-399.
Gaston, C. P. (1994). Pesticide regulatory policies of selected countries in Asia. In: Technical Report No. 2. Bethesda, Maryland: Regional Agribusiness Project - RAP.
Handini F R, Amin A dan Aguston. (2013). Effect Of Organochlorines (Endosulfan) Contaminated Medium on Content of Gelatin and Thallus Morphology Gracilaria verrucosa. Jurnal Ilmiah Perikanan dan Kelautan, 5(1):55-60.
Hu, L., Zhang, G., Zheng, B., Qi, Y. N., Lin, T., & Guo, Z. (2009). Occurrence and distribution of organochlorine pesticides (OCPs) in surface sediments of the Bohai Sea, China. Chemosphere, 77(5):663-672.
Jayaraj, R., Megha, P., & Sreedev, P. (2016). Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdisciplinary Toxicology, 9(3):90-100.
Kepel, R. C., Lumingas, L. J. L., Tombokan, J. L., Desy, M. H., & Mantiri, D. M. H. (2021). Biomineral characterization and phytochemical profile of green algae Halimeda macroloba and Halimeda opuntia from coastal waters of Tanjung Merah, Bitung City, North Sulawesi, Indonesia. AACL Bioflux, 14(6):3217-3230.
Neilson, A. H., Allard, A. S., Hynning, P. A., & Remberger, M. (1991). Distribution, fate and persistence of organochlorine compounds formed during the production of bleached pulp. Toxicological & Environmental Chemistry, 30(1):3-41.
Nunes, L. M. (2022). Organochlorine compounds in beached plastics and marine organisms. Frontiers in Environmental Science, 9(784317):1-13.
Perez, D. J., Iturburu, F. G., Calderon, G., Oyesqui, L. A., De Gerónimo, E., & Aparicio, V. C. (2021). Ecological risk assessment of current-use pesticides and biocides in soils, sediments, and surface water of a mixed land-use basin of the Pampas region, Argentina. Chemosphere, 263(1):1-14.
Shahid, M., Manoharadas, S., Altaf, M., & Alrefaei, A.F. (2021). Organochlorine pesticides negatively influenced the cellular growth, morphostructure, cell viability, biofilm-formation, and phosphate-solubilization activities of Enterobacter cloacae strain EAM 35. ACS Omega, 6(8):5548-5559.
Singkoh, M. F., Mantiri, D. M. H., Lumenta, C., & Manoppo, H. (2019). Biomineral characterization and antibacterial activity of marine algae Tricleocarpa fragilis from Kora-Kora coastal waters of Minahasa Regency, Indonesia. AACL Bioflux, 12(5):1814-1822.
Sundhar, S., Jeyashakila, R., Jeyasekaran, G., Aanand, S., & Shalini, R. (2020). Assessment of organochlorine pesticides in different seaweed species of Thoothukudi coast, Tamil Nadu, South India. Indian Journal Fish, 68(2):148-153.
Tang, C. Y., & Yang, Z. (2017). Transmission electron microscopy (TEM). In Membrane characterization (pp. 145-159). Elsevier.
Tudi, M., Daniel, R. H., Wang, L., Lyu, J., Sadler, R., Connell, D., & Phung, D. T. (2021). Agriculture development, pesticide application and its impact on the environment. International Journal of Environmental Research and Public Health, 18(3):1-23.
Vagi, M. C., Petsas, A. S., & Kostopoulou, M. N. (2021). Potential effects of persistent organic contaminants on marine biota: a review on recent research. Water, 13(18):1-35.