
Date Log
Copyright (c) 2025 Jurnal Ilmiah Perikanan dan Kelautan

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
1. Copyright of the article is transferred to the journal, by the knowledge of the author, whilst the moral right of the publication belongs to the author.
2. The legal formal aspect of journal publication accessibility refers to Creative Commons Atribusi-Non Commercial-Share alike (CC BY-NC-SA), (https://creativecommons.org/licenses/by-nc-sa/4.0/)
3. The articles published in the journal are open access and can be used for non-commercial purposes. Other than the aims mentioned above, the editorial board is not responsible for copyright violation
The manuscript authentic and copyright statement submission can be downloaded ON THIS FORM.
Bioactive Peptides from Indonesian High-Protein Fermented Foods: A Promising Source of Functional Compounds
Corresponding Author(s) : Dina Mustika Rini
Jurnal Ilmiah Perikanan dan Kelautan, 2025: IN PRESS ISSUE (JUST ACCEPTED MANUSCRIPT, 2025)
Abstract
Graphical Abstract
Highlight Research
- Fermentation improves the biological function of proteins.
- Bioactive peptides increase after fermentation.
- Indonesia has many unexplored sources of bioactive peptides in fermented food.
- Indonesian high-protein fermented foods have high bioactivity potential.
- Research is needed on the bioactivity of Indonesian bioactive peptides sources for broader health implications.
Abstract
Bioactive peptides (BPs) are short protein fragments with significant physiological functions, including antioxidant, antihypertensive, antimicrobial, and antidiabetic activities. These compounds are commonly released during fermentation, making high-protein fermented foods (HPFF) a promising source of natural health-promoting agents. Indonesia, with its rich biodiversity and long-standing tradition of fermentation, offers a unique variety of traditional HPFF. However, the potential of these indigenous products as BP sources remains underexplored and poorly represented in the global literature. This review aims to examine Indonesian traditional HPFF as a source of BPs, categorize them based on raw material, and highlight their functional and health-related properties. A narrative literature review was conducted using publications from Scopus, PubMed, ProQuest, Google Scholar, and SINTA (2000–2023). The search applied Boolean strategies and the PEO (Population, Exposure, Outcome) framework to identify relevant studies on fermented foods, bioactive peptides, and their biological activities. Indonesian HPFF including tempeh, rusip, dangke, pekasam, and cangkuk contain BPs with diverse bioactivities. Tempeh shows antidiabetic and antihypertensive potential; rusip exhibits antioxidant and cholesterol-lowering effects; dangke and cangkuk demonstrate antimicrobial and ACE-inhibitory activities. These functional properties are influenced by substrate type (e.g., legumes, fish, milk), microbial composition (lactic acid bacteria, Bacillus spp., yeasts), and fermentation conditions. Notably, certain Indonesian HPFF exhibit multi-functional peptides with synergistic health effects, suggesting significant therapeutic promise. This review bridges a critical knowledge gap by consolidating evidence on BPs from Indonesian HPFF. It provides a foundation for future investigations into peptide bioactivity, supports functional food innovation, and highlights the global relevance of Indonesia’s fermentation heritage in health science and sustainable nutrition.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Abdel-Hamid, M., Otte, J., De Gobba, C., Osman, A., & Hamad, E. (2017). Angiotensin i-converting enzyme inhibitory activity and antioxidant capacity of bioactive peptides derived from enzymatic hydrolysis of buffalo milk proteins. International Dairy Journal, 66(3):91-98.
- Abd-Talib, N., Yaji, E. L. A., Wahab, N. S. A., Razali, N., Len, K. Y. T., Roslan, J., Saari, N., & Pa’ee, K. F. (2022). Bioactive peptides and its alternative processes: A review. Biotechnology and Bioprocess Engineering, 27(3):306-335.
- Abdelhedi, O., & Nasri, M. (2019). Basic and recent advances in marine antihypertensive peptides: Production, structure-activity relationship and bioavailability. Trends in Food Science and Technology, 88(6):543-557.
- Agustiari, N. M., Anggrahini, S., & Ningrum, A. (2019). Influences of palm sugar, fermentation time and enzyme hydrolysis on activities of angiotensin converting enzyme inhibitory (ace-i) in joruk oci fish (Rastrelliger kanagurta) hydrolyzate. Pakistan Journal of Nutrition, 18(12):1094-1100.
- Agustina, R. K., Dieny, F. F., Rustanti, N., Anjani, G., & Afifah, D. N. (2018). Antioxidant activity and soluble protein content of tempeh gembus hydrolysate. Hiroshima Journal of Medical Science, 67(1):1-7.
- Agyei, D., Tsopmo, A., & Udenigwe, C. C. (2018). Bioinformatics and peptidomics approaches to the discovery and analysis of food-derived bioactive peptides. Analytical and Bioanalytical Chemistry, 410(15):3463-3472.
- Auwal, S. M., Abidin, N. Z., Zarei, M., Tan, C. P., & Saari, N. (2019). Identification, structure activity relationship and in silico molecular docking analyzes of five novel angiotensin I-converting enzyme (ACE) inhibitory peptides from stone fish (Actinopyga lecanora) hydrolysates. PLoS ONE, 14(1):1-18.
- Ahnan-Winarno, A. D., Cordeiro, L., Winarno, F. G., Gibbons, J., & Xiao, H. (2021). Tempeh: A semicentennial review on its health benefits, fermentation, safety, processing, sustainability, and affordability. Comprehensive Reviews in Food Science and Food Safety, 20(2):1717-1767.
- Akbarian, M., Khani, A., Eghbalpour, S., & Uversky, V. N. (2022). Bioactive peptides: Synthesis, sources, applications, and proposed mechanisms of action. International Journal of Molecular Sciences, 23(3):1-30.
- Anggrahini, S., Setyaningsih, W., Ningrum, A., Anto, & Agustiari, N. M. (2020). Physicochemical properties of oci fish joruk (Rastrelliger kanagurta) and the antioxidant activity of joruk hydrolysate. Food Research, 4(3):786-792.
- Antara, N. S., Sujaya, I. N., Yokota, A., Asano, K., Aryanta, W. R., & Tomita, F. (2002). Identification and succession of lactic acid bacteria during fermentation of “urutan”, a Balinese indigenous fermented sausage. World Journal of Microbiology and Biotechnology, 18(3):255-262.
- Arnold, M., Rajagukguk, Y. V., & Michałowska, A. G. (2021). Characterization of dadih: Traditional fermented buffalo milk of Minangkabau. Beverages, 7(60):1-16.
- Baehaki, A., Nopianti, R., Nofriansyah, H., & Gofar, H. (2024). Isolation and production of proteases from bacteria isolate from bekasam and rusip (traditional food from South Sumatera, Indonesia). World Journal of Advanced Research and Reviews, 21(3):1719-1724.
- Bashir, K. M. I., Sohn, J. H., Kim, J. S., & Choi, J. S. (2020). Identification and characterization of novel antioxidant peptides from mackerel (Scomber japonicus) muscle protein hydrolysates. Food Chemistry, 323(22):1-8.
- Banihashemi, S. A., Nikoo, M., Ghasempour, Z., & Ehsani, A. (2020). Bioactive peptides fractions from traditional Iranian Koopeh cheese; lactic fermentation products. Biocatalysis and Agricultural Biotechnology, 29(7):1-7.
- Caner, S., Zhang, X., Jiang, J., Chen, H. M., Nguyen, N. T., Overkleeft, H., Brayer, G. D., & Withers, S. G. (2016). Glucosyl epi-cyclophellitol allows mechanism-based inactivation and structural analysis of human pancreatic α-amylase. FEBS Letters, 590(8):1143-1151.
- Chai, K. F., Voo, A. Y. H., & Chen, W. N. (2020). Bioactive peptides from food fermentation: A comprehensive review of their sources, bioactivities, applications, and future development. Comprehensive Reviews in Food Science and Food Safety, 19(6):3825-3885.
- Chalid, S. Y., Nurbayti, S., & Pratama, A. F. (2018). ACE angiotensin converting enzyme (ACE) inhibitory activity of protein fraction of fermented buffalo milk (Bubalus bubalis). Jurnal Ilmu Kefarmasian Indonesia, 16(2):214-224.
- Chakrabarti, S., Guha, S., & Majumder, K. (2018). Food-derived bioactive peptides in human health: Challenges and opportunities. Nutrients, 10(11);1-17.
- Chalamaiah, M., Ulug, S. K., Hong, H., & Wu, J. (2019). Regulatory requirements of bioactive peptides (protein hydrolysates) from food proteins. Journal of Functional Foods, 58(7):123-129.
- Chalid, S. Y., & Hartiningsih, F. (2013). The potential of fermented buffalo milk curd as an antioxidant and antibacterial. Prosiding Semirata FMIPA Universitas Lampung, 1(1):369-375.
- Chalid, S. Y., Kinasih, P. N., Hatiningsih, F., & Rudiana, T. (2021). Antioxidant activities and profile of amino acid of yoghurt from beef milk fermentation with dadih starter. Jurnal Kimia Valensi, 7(1): 58-68.
- Chaudhury, A., Duvoor, C., Dendi, V. S. R., Kraleti, S., Chada, A., Ravilla, R., Marco, A., Shekhawat, N. S., Montales, M. T., Kuriakose, K., Sasapu, A., Beebe, A., Patil, N., Musham, C. K., Lohani, G. P., & Mirza, W. (2017). Clinical review of antidiabetic drugs: Implications for type 2 diabetes mellitus management. Frontiers in Endocrinology, 8(1):1-12.
- Cheng, S., Yuan, L., Gao, R. L., Chen, S., Li, H., & Du, M. (2024). Nutrition and cardiovascular disease: The potential role of marine bioactive proteins and peptides in thrombosis prevention. Journal of Agricultural and Food Chemistry, 72(13):6815-6832.
- Chi, C. H., & Cho, S. J. (2016). Improvement of bioactivity of soybean meal by solid-state fermentation with Bacillus amyloliquefaciens versus Lactobacillus spp. and Saccharomyces cerevisiae. LWT Food Science and Technology, 68(4):619-625.
- Choi, K. Y., Chow, L. N. Y., & Mookherjee, N. (2012). Cationic Host Defence Peptides: Multifaceted Role In Immune Modulation And Inflammation. Journal of Innate Immunity, 4(4), 361–370.
- Chourasia, R., Abedin, M. M., Phukon, L. C., Sahoo, D., Singh, S. P., & Rai, A. K. (2021). Biotechnological approaches for the production of designer cheese with improved functionality. Comprehensive Reviews in Food Science and Food Safety, 20(1):960-979.
- Chourasia, R., Phukon, L. C., Abedin, M. M., Padhi, S., Singh, S. P., & Rai, A. K. (2023). Bioactive peptides on fermented foods and their application: A critical review. Systems Microbiology and Biomanufacturing, 3(1):88-109.
- Ding, Q., Sheikh, A. R., Chen, Q., Hu, Y., Sun, N., Su, X., Luo, L., Ma, H., & and He, R. (2023). Understanding the mechanism for the structure-activity relationship of food-derived ACEI peptides. Food Reviews International, 39(4):1751-1769.
- Vo, T. D. L., Pham, T. K., & Ha, Q. (2018). Recovery of proteolysate from salmon by-product: Investigation of antioxidant activity, optimization of hydrolysis, determination of iron-binding activity and identification of bioactive peptides. The International Journal of Engineering and Science (IJES), 7(9):18-30.
- Dziuba, B., & Dziuba, M. (2014). Milk protein-derived bioactive peptides in dairy product: Molecular, biological, and methodological aspect. Acta Science Polonorum Technologia Alimentaria, 13(1):5-25.
- Elfahri, K. R., Donkor, O. N., & Vasiljevic, T. (2014). Potential of novel Lactobacillus helveticus strains and their cell wall bound proteases to release physiologically active peptides from milk proteins. International Dairy Journal, 38(1):37-46.
- El-Fattah, A. A., Sakr, S., El-Dieb, S., & Elkashef, H. (2016). Angiotensin-converting enzyme inhibition and antioxidant activity of commercial dairy starter cultures. Food Science and Biotechnology, 25(6):1745-1751.
- Erdmann, K., Cheung, B. W. Y., & Schröder, H. (2008). The possible roles of food-derived bioactive peptides in reducing the risk of cardiovascular disease. Journal of Nutritional Biochemistry, 19(10):643-654.
- Fajri, L. N., Suciati, S., Fakhrudin, I. A., Silvita, S., Prasetyo, O., & Rachman, H. T. (2024). Analysis of scientific knowledge on the process of making tempeh gembus as local wisdom and its potential for empowering students’ analytical thinking skills. Jurnal Pendidikan Sains Indonesia, 12(3):575-596.
- Fitzgerald, R., Murray, B., & Walsh, D. (2004). The emerging role of dairy proteins and bioactive peptides in nutrition and health hypotensive peptides from milk proteins. American Society of Nutritional Sciences, 1-9.
- Friedman M. In: Process-induced food toxicants: Occurrence, formation, mitigation, and health risks. 1 ed. Stadler R.H., Lineback D.R., editors. John Wiley & Sons; 2008. Alkali and/or acid treatment: Dietary significance of processing-induced lysinoalanine in food; pp. 473–508.
- García-Moreno, P. J., Espejo-Carpio, F. J., Guadix, A., & Guadix, E. M. (2015). Production and identification of angiotensin I-converting enzyme (ACE) inhibitory peptides from Mediterranean Fish discards. Journal of Functional Foods, 18(7):95-105.
- Gavrish, E., Bollmann, A., Epstein, S., & Lewis, K. (2008). A trap for in situ cultivation of filamentous actinobacteria. Journal of Microbiological Methods, 72(3):257-262.
- Gibbs, B. F., Zougman, A., Masse, R., & Mulligan, C. (2004). Production and characterization of bioactive peptides from soy hydrolysate and soy-fermented food. Food Research International, 37(2):123-131.
- Girgih, A. T., He, R., Malomo, S., Offengenden, M., Wu, J., & Aluko, R. E. (2014). Structural and functional characterization of hemp seed (Cannabis Sativa L.) protein-derived antioxidant and antihypertensive peptides. Journal of Functional Foods, 6(1):384-394.
- Gui, M., Gao, L., Rao, L., Li, P., Zhang, Y., Han, J. W., Li, J. (2022). Bioactive peptides identified from enzymatic hydrolysates of sturgeon skin. Journal of the Science of Food and Agriculture, 102(5):1948-1957.
- Grau-Campistany, A., Strandberg, E., Wadhwani, P., Reichert, J., Bürck, J., Rabanal, F., & Ulrich, A. S. (2015). Hydrophobic mismatch demonstrated for membranolytic peptides, and their use as molecular rulers to measure bilayer thickness in native cells. Scientific Reports, 5(1):1-9.
- Guo, Q., Chen, P., & Chen, X. (2023). bioactive peptides derived from fermented foods: Preparation And biological activities. Journal of Functional Foods, 101(2):1-21.
- Ha, G. E., Chang, O. K., Jo, S. M., Han, G. S., Park, B. Y., Ham, J. S., & Jeong, S. G. (2015). Identification of antihypertensive peptides derived from low molecular weight casein hydrolysates generated during fermentation by bifidobacterium longum KACC 91563. Korean Journal for Food Science of Animal Resources, 35(6):738-747.
- Handayani, M. T., Indrati, R., & Cahyanto, M. N. (2020). Chemical characteristics and activity of ACE inhibitors on fractionation of tempeh koro kratok (Phaseolus lunatus) peptides. Indonesian Food and Nutrition Progress, 16(2):42-46.
- Harnedy-Rothwell, P. A., McLaughlin, C. M., O’Keeffe, M. B., Le Gouic, A. V., Allsopp, P. J., McSorley, E. M., Sharkey, S., Whooley, J., McGovern, B., O’Harte, F. P. M., & FitzGerald, R.J. (2020). Identification and characterisation of peptides from a boarfish (Capros aper) protein hydrolysate displaying in vitro dipeptidyl peptidase- IV (DPP-IV) inhibitory and insulinotropic activity. Food Research International. 131(5):1-8.
- Harris, F., Dennison, S. R., & Phoenix, D. A. (2009). Anionic antimicrobial peptides from eukaryotic organisms. Current Protein & Peptide Science, 10(6):585-606.
- Hati, S., Patel, N., Sakure, A., & Mandal, S. (2018). Influence of whey protein concentrate on the production of antibacterial peptides derived from fermented milk by lactic acid bacteria. International Journal of Peptide Research and Therapeutics, 24(1):87-98.
- Herlina, V. T., Lioe, H. N., Kusumaningrum, H. D., & Adawiyah, D. R. (2022). Nutritional composition of tauco as Indonesian fermented soybean paste. Journal of Ethnic Foods, 9(44):1-17.
- Herlina, V. T., & Setiarto, R. H. B. (2024a). From tradition to innovation: Dadih, the Minangkabau tribe’s traditional fermented buffalo milk from Indonesia. Journal of Ethnic Foods, 11(1):1-16.
- Herlina, V. T., & Setiarto, R. H. B. (2024b). Terasi, exploring the indonesian ethnic fermented shrimp paste. Journal of Ethnic Foods, 11(7):1-13.
- Herlina, V. T., & Setiarto, R. H. B. (2025). Unveiling the cultural tradition and science of Indonesian fermented ethnic soybean paste: Tauco. Journal of Ethnic Foods, 12(1):1-16.
- Hernández-Ledesma, B., García-Nebot, M. J., Fernández-Tomé, S., Amigo, L., & Recio, I. (2014). Dairy protein hydrolysates: Peptides for health benefits. International Dairy Journal, 38(2):82-100.
- Himaya, S. W. A., Ryu, B. M., Ngo, D. H., & Kim, S. K. (2012). Peptide isolated from japanese flounder skin gelatin protects against cellular oxidative damage. Journal of Agricultural and Food Chemistry, 60(36):9112-9119.
- Holton, T. A., Vijayakumar, V., & Khaldi, N. (2013). Bioinformatics: Current perspectives and future directions for food and nutritional research facilitated by a food-wiki database. Trends in Food Science and Technology, 34(1):5-17.
- Hong, H., Zheng, Y., Song, S., Zhang, Y., Zhang, C., Liu, J., Luo, Y. (2020). Identification and characterization of DPP-IV inhibitory peptides from silver carp swim bladder hydrolysates. Food Bioscience. 38(6):1-10.
- Intarasirisawat, R., Benjakul, S., Wu, J., & Visessanguan, W. (2013). Isolation of antioxidative and ACE inhibitory peptides from protein hydrolysate of skipjack (Katsuwana pelamis) roe. Journal of Functional Foods, 5(4):1854-1862.
- Jakubczyk, A., Karaś, M., Baraniak, B., & Pietrzak, M. (2013). The impact of fermentation and in vitro digestion on formation angiotensin converting enzyme (ACE) inhibitory peptides from pea proteins. Food Chemistry, 141(4):3774-3780.
- Jatmiko, Y. D., Howarth, G. S., & Barton, M. D. (2017). Assessment of Probiotic Properties of Lactic Acid Bacteria Isolated from Indonesian naturally fermented milk. AIP Conference Proceedings, 1908(1):1-15.
- Jeleń, H., Majcher, M., Ginja, A., & Kuligowski, M. (2013). Determination of compounds responsible for tempeh aroma. Food Chemistry, 141(1):459-465.
- Jemil, I., Abdelhedi, O., Mora, L., Nasri, R., Aristoy, M. C., Jridi, M., Hajji, M., Toldrá, F., & Nasri, M. (2016). Peptidomic analysis of bioactive peptides in zebra blenny (Salaria basilisca) muscle protein hydrolysate exhibiting antimicrobial activity obtained by fermentation with Bacillus mojavensis A21. Process Biochemistry, 51(12):2186-2197.
- Jin, R., Teng, X., Shang, J., Wang, D., & Liu, N. (2020). Identification of novel DPP–IV inhibitory peptides from Atlantic salmon (Salmo salar) skin. Food Research International, 133(7):1-10.
- Karami, Z., & Akbari-adergani, B. (2019). Bioactive food derived peptides: A review on correlation between structure of bioactive peptides and their functional properties. Journal of Food Science and Technology, 56(2):535-547.
- Ketnawa, S., Suwal, S., Huang, J. Y., & Liceaga, A. M. (2019). Selective separation and characterization of dual ACE and DPP-IV inhibitory peptides from rainbow trout (Oncorhynchus mykiss) protein hydrolysates. International Journal of Food Science Technology, 54(4):1062-1073.
- Khan, M. U., Pirzadeh, M., Förster, C. Y., Shityakov, S., & Shariati, M. A. (2018). Role of milk-derived antibacterial peptides in modern food biotechnology: Their synthesis, applications and future perspectives. Biomolecules, 8(4):1-16.
- Khirzin, M. H., Ton, S., & Sari, A. (2023). Quality of fermented goat meat (bekamal) with different fermentation times. Jurnal Ilmiah Multidisiplin, 2(8):3609-3619.
- Kim, H. J., Kang, S. G., Jaiswal, L., Li, J., Choi, J. H., Moon, S. M., Cho, J. Y., & Ham, K. S. (2016). Identification of four new angiotensin I-converting enzyme inhibitory peptides from fermented anchovy sauce. Applied Biological Chemistry, 59(1):25-31.
- Kleekayai, T., Harnedy, P. A., O’Keeffe, M. B., Poyarkov, A. A., Cunhaneves, A., Suntornsuk, W., & Fitzgerald, R. J. (2015). Extraction of antioxidant and ACE inhibitory peptides from Thai traditional fermented shrimp pastes. Food Chemistry, 176(11):441-447.
- Koesoemawardani, D., Afifah, L. U., Herdiana, N., Suharyono, A. S., Fadhallah, E. G., & Ali, M. (2021). Microbiological, physical and chemical properties of joruk (fermented fish product) with different levels of salt concentration. Biodiversitas, 22(1):132-136.
- Korhonen, H. (2009). Milk-derived bioactive peptides: From science to applications. Journal of Functional Foods, 1(2):177-187.
- Kuba, M., Shinjo, S., & Yasuda, M. (2004). Antihypertensive and hypocholesterolemic effects of tofuyo in spontaneously hypertensive rats. Journal of Health Science, 50(6):1-4.
- Kumari, R., Sanjukta, S., Sahoo, D., & Rai, A. K. (2022). Functional peptides in asian protein rich fermented foods : Production and health benefits. Systems Microbiology and Biomanufacturing, 2(1):1-13.
- Kurnianto, M. A., Defri, I., Syahbanu, F., & Aulia, S. S. (2024). Fish-derived bioactive peptide: Bioactivity potency, structural characteristics, and conventional and bioinformatics approaches for identification. Future Foods, 9(1):1-15.
- Kurnianto, M. A., Puspita, A. A., Winarti, S., Munarko, H., Aulia, S. S., & Rini, D. M. (2025). Traditional fermented anchovy rusip demonstrates antidiabetic effects through enzyme inhibition and metabolic improvement in diabetic rats. Biodiversitas, 26(5):2278-2288.
- Kurnianto, M. A., Syahbanu, F., Hamidatun, H., Defri, I., & Sanjaya, Y. A. (2023). Prospects of bioinformatics approach for exploring and mapping potential bioactive peptide of rusip (the traditional Indonesian fermented anchovy): A review. Advances in Food Science, Sustainable Agriculture and Agroindustrial Engineering, 6(2):116-133.
- Kurnianto, M. A., Lioe, H. N., Chasanah, E., & Kusumaningrum, H. D. (2022). Purification, HR-LC-ESI-MS-MS identification, and peptide prediction of bacteriocin-like inhibitory substances produced by Streptomyces sp. isolated from Chanos chanos. International Journal of Food Science, 2022(1):1-14.
- Kurnianto, M. A., Adirama, S. I., Xu, W., Winarti, S., & Rini, D. M. (2025). Enhancing the quality of traditional Indonesian shrimp paste (trasi) through Tetragenococcus halophilus 54M106-3 inoculation: Physicochemical, sensory, and bioactivity insights. Foods, 14(14):1-18.
- Kusumaningtyas, E., & Utami, A. (2020). Antioxidant Activity of Soluble Protein from Natural Fermented Buffalo Milk. IOP Conference Series: Earth and Environmental Science, 457(1):1-7.
- Lei, J., Sun, L., Huang, S., Zhu, C., Li, P., He, J., Mackey, V., Coy, D. H., & He, Q. (2019). The antimicrobial peptides and their potential clinical applications. American Journal of Translational Research, 11(7):3919-3931.
- Leonard, W., Zhang, P., Ying, D., Adhikari, B., & Fang, Z. (2021). Fermentation transforms the phenolic profiles and bioactivities of plant-based foods. Biotechnology Advances, 49(4):1-16.
- Liang, Y., Zhang, X., Yuan, Y., Bao, Y., & Xiong, M. (2020). Role and modulation of the secondary structure of antimicrobial peptides to improve selectivity. Biomaterials Science, 8(24):6858-6866.
- Li-Chan, E. C. Y. (2015). Bioactive peptides and protein hydrolysates: Research trends and challenges for application as nutraceuticals and functional food ingredients. Current Opinion in Food Science, 1(1):28-37.
- Lima, K. O., de Quadros, C., Rocha, M., de Lacerda, J. T. J. G., Juliano, M. A., Dias, M., Mendes, M. A., & Prentice, C. (2019). Bioactivity and bioaccessibility of protein hydrolyzates from industrial byproducts of stripped weakfish (Cynoscion guatucupa). LWT, 111(13):408-413.
- Limón, R. I., Peñas, E., Torino, M. I., Martínez-Villaluenga, C., Dueñas, M., & Frias, J. (2015). Fermentation enhances the content of bioactive compounds in kidney bean extracts. Food Chemistry, 172(7):343-352.
- Liu, G., Ren, L., Song, Z., Wang, C., & Sun, B. (2015). Purification and characteristics of bifidocin A, a novel bacteriocin produced by Bifidobacterium animals BB04 from centenarians’ intestine. Food Control, 50(4):889-895.
- Liu, Q., Kong, B., Xiong, Y. L., & Xia, X. (2010). Antioxidant activity and functional properties of porcine plasma protein hydrolysate as influenced by the degree of hydrolysis. Food Chemistry, 118(2):403-410.
- Liu, R., Kim, A. H., Kwak, M. K., & Kang, S. O. (2017). Proline-based cyclic dipeptides from Korean fermented vegetable kimchi and from Leuconostoc mesenteroides LBP-Ko6 have activities against multidrug-resistant bacteria. Frontiers in Microbiology, 8(1):1-15.
- Mahdi, C., Untari, H., & Padaga, M. C. (2018). Identification and characterization of bioactive peptides of fermented goat milk as a sources of antioxidant as a therapeutic natural product. IOP Conference Series: Materials Science and Engineering, 299(1):1-7.
- Marlida, Y., Susalam, M. K., Harnentis, H., Jamsari, J., Huda, N., Noordin, W. N. M., Anggraini, L., & Ardani, L. R. (2023). Metagenomic analysis and biodiversity of bacteria in traditional fermented fish or budu from West Sumatera, Indonesia. Journal of Advanced Veterinary and Animal Research, 10(4):801-808.
- Maruddin, F., Ratmawati, R., Fahrullah, F., & Taufik, M. (2018). Characteristics of edible film based dangke whey with carrageenan addition. Jurnal Veteriner, 19(2):291-297.
- Materia, V. C., Linnemann, A. R., Smid, E. J., & Schoustra, S. E. (2021). Contribution of traditional fermented foods to food systems transformation: Value addition and inclusive entrepreneurship. Food Security, 13(5):1163-1177.
- Maulid, A., & Ciptandi, F. (2023). Exploring traditional dadiah food as a part of cultural identity and sustainability in Minangkabau tribe tourism. Tourism Research Journal, 7(2):1-12.
- Mckerchar, H., Dyer, J. M., Gerrard, J. A., Maes, E., Clerns, S., & Dobson, R. C. J. (2023). Characterizing lysinoalanine crosslinks in food systems: Discovery of a diagnostic ion in model peptides using MALDI mass spectrometry. Food Chemistry X, 19(3):1-11.
- Minkiewicz, P., Iwaniak, A., & Darewicz, M. (2019). BIOPEP-UWM database of bioactive peptides: Current opportunities. International Journal of Molecular Sciences, 20(23):1-23.
- Mirdhayati, I., & Zain, W. N. H. (2020). Chemical characteristic, lactic acid bacteria population, and angiotensin converting enzyme inhibitory activity of traditional fermented beef “cangkuk” by spontaneous fermentation with the addition of bamboo shoot. Journal of the Indonesian Tropical Animal Agriculture, 45(3):222-233.
- Mohanty, D., Jena, R., Choudhury, P. K., Pattnaik, R., Mohapatra, S., & Saini, M. R. (2016). Milk derived antimicrobial bioactive peptides: A review. International Journal of Food Properties, 19(4):837-846.
- Montoya-Rodríguez, A., de Mejía, E. G., Dia, V. P., Reyes-Moreno, C., & Milán-Carrillo, J. (2014). Extrusion improved the anti-inflammatory effect of amaranth (Amaranthus hypochondriacus) hydrolysates in LPS-induced human THP-1 macrophage-like and mouse RAW 264.7 macrophages by preventing activation of NF-Κb signaling. Molecular Nutrition and Food Research, 58(5):1028-1041.
- Moravej, H., Moravej, Z., Yazdanparast, M., Heiat, M., Mirhosseini, A., Moghaddam, M. M., & Mirnejad, R. (2018). Antimicrobial peptides: Features, action, and their resistance mechanisms in bacteria. Microbial Drug Resistance, 24(6):747-767.
- Mudgil, P., Baby, B., Ngoh, Y. Y., Kamal, H., Vijayan, R., Gan, C. Y., & Maqsood, S. (2019). Molecular binding mechanism and identification of novel anti-hypertensive and anti-inflammatory bioactive peptides from camel milk protein hydrolysates. LWT, 112(14):1-12.
- Mulyani, R., Adi, P., Setiawibawa, A. A., & Yang, J. J. (2022). Traditional Indonesian fermented products made from animal foods (meat and fish): A review. Journal of Applied Agriculture, Health and Technology, 1(2):34-48.
- Murwani, R., Anggraeni, R., Setiawan, G. N. A., Astari, P. D., Cahyani, N. K. D., Sibero, M. T., & Ambariyanto, A. (2024). Lactic acid bacteria isolates and the microbiome of cincalok, tempoyak, and mandai: A traditional fermented food from Kalimantan Island, Indonesia. International Journal of Food Science, 2024(1):1-11.
- Najafian, L., & Babji, A. S. (2014). Production of bioactive peptides using enzymatic hydrolysis and identification antioxidative peptides from patin (Pangasius sutchi) sarcoplasmic protein hydolysate. Journal of Functional Foods, 9(1):280-289.
- Najafian, L., & Babji, A. S. (2018). Fractionation and identification of novel antioxidant peptides from fermented fish (pekasam). Journal of Food Measurement and Characterization, 12(3):2174-2183.
- Najafian, L., & Babji, A. S. (2019). Purification and identification of antioxidant peptides from fermented fish sauce (budu). Journal of Aquatic Food Product Technology, 28(1):14-24.
- Nongonierma, A. B., & FitzGerald, R. J. (2019). Features of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from dietary proteins. Journal of Food Biochemistry, 43(1):1-12.
- Nirmal, N. P., Santivarangkna, C., Rajput, M. S., Benjakul, S., & Maqsood, S. (2022). Valorization of fish byproducts: Sources to end-product applications of bioactive protein hydrolyzate. Comprehensive Reviews in Food Science and Food Safety, 21(2):1803-1842.
- Nofiani, R., & Ardiningsih, P. (2018). Physicochemical and microbiological profiles of commercial cincalok from West Kalimantan. Jurnal Pengolahan Hasil Perikanan, 21(2):243-249.
- Nout, M. J. R., & Kiers, J. L. (2005). Tempe fermentation, innovation and functionality: Update into the third millenium. Journal of Applied Microbiology, 98(4):789-805.
- Nur, F., Hatta, M., Natzir, R., & Djide, M. N. (2017). Isolation of lactic acid bacteria as a potential probiotic in dangke, a traditional food from Enrekang, Indonesia. International Journal of Sciences: Basic and Applied Research, 35(1):19-27.
- Nuraida, L. (2015). A review : Health promoting lactic acid bacteria in traditional Indonesian fermented foods. Food Science and Human Wellness, 4(2):47-55.
- Nurhayati, Y., Mat Rahim, N. N., Mohd Juhari, N. I., & Tang, J. Y. H. (2024). Physicochemical and proximate composition of cincalok (fermented shrimp) mixed with red onion powder, red chili pepper and musk lime juice. IOP Conference Series: Earth and Environmental Science, 1413(1):1-8.
- Nurkolis, F., Qhabibi, F. R., Yusuf, V. M., Bulain, S., Praditya, G. N., Lailossa, D. G., Mahira, M. F. N. Al, Prima, E. N., Arjuna, T., Rahayu, S., Gunawan, W. B., Kartawidjajaputra, F., Subali, D., & Permatasari, H. K. (2022). Anticancer properties of soy-based tempe: A proposed opinion for future meal. Frontiers in Oncology, 12(1):1-5.
- Nurmahdi, H., Prasetyawan, S., Wenno, M. R., & Aulanni’am. (2017). Antihypertension effect from bakasang’s peptide extract based on MDA levels in sera and Inos expression in cardiac tissue of rats hypertensive model. International Journal of Pharmaceutical and Clinical Research, 9(2):129-134.
- Ohata, M., Uchida, S., Zhou, L., & Arihara, K. (2016). Antioxidant activity of fermented meat sauce and isolation of an associated antioxidant peptide. Food Chemistry, 194(5):1034-1039.
- Oktarini, I. A., Purnomo, H., . Aulanni’am., & Radiati, L. E. (2019). Antioxidant activity, amino acid profile and microbial quality of bebontot, a Balinese traditional fermented chicken meat products. Majalah Ilmiah Peternakan, 22(3):1-11.
- Olalere, O. A., Yap, P. G., & Gan, C. Y. (2023). Comprehensive review on some food-derived bioactive peptides with anti-hypertension therapeutic potential for angiotensin-converting enzyme (ACE) inhibition. Journal of Proteins and Proteomics, 14(2):129-161.
- Oyama, M., Hung, T. V., Yoda, K., He, F., & Suzuki, T. (2017). A novel whey tetrapeptide IPAV reduces interleukin-8 production induced by TNF-Α in human intestinal caco-2 cells. Journal of Functional Foods, 35(8):376-383.
- Padhi, S., Chourasia, R., Kumari, M., Singh, S. P., & Rai, A. K. (2022). Production and characterization of bioactive peptides from rice beans using Bacillus subtilis. Bioresource Technology, 351(10):1-8.
- Patergnani, S., Danese, A., Bouhamida, E., Aguiari, G., Previati, M., Pinton, P., & Giorgi, C. (2020). Various aspects of calcium signaling in the regulation of apoptosis, autophagy, cell proliferation, and cancer. International Journal of Molecular Sciences, 21(21):1-27.
- Persulessy, C. B., Kusdiyantini, E., Ferniah, R. S., Agustini, T. W., & Budiharjo, A. (2020). Ina sua: The traditional food fermentation from Teon Nila Serua, Central of Maluku, Indonesia. Journal of Ethnic Foods, 7(1):1-7.
- Prihanto, A. A., Umam, N. I., & Bangun, J. D. G. (2024). Unveiling the secrets of Indonesian fermented fish: Characteristics of lactic acid bacteria, roles, and potential in product development. Food Bioscience, 61(5):1-15.
- Pritchard, S. R., Phillips, M., & Kailasapathy, K. (2010). Identification of bioactive peptides in commercial cheddar cheese. Food Research International, 43(5):1545-1548.
- Puspitojat, E., Cahyanto, M. N., Marsono, Y., & Indrati, R. (2019). Production of angiotensin-I-converting enzyme (ACE) inhibitory peptides during the fermentation of jack bean (Canavalia ensiformis) tempe. Pakistan Journal of Nutrition, 18(5):464-470.
- Putri, T. R., Yuandini, S. A., Nada, G., & Simamora, C. J. K. (2021). Antiadherence and antimicrobial activity crude extracts bioactive peptides traditional dayak fermented food pekasam black tilapia (Oreochromis niloticus). International Conference of Indonesian Society for Lactic Acid Bacteria, 4(1):1-3.
- Rachman, S. H., Santoso, J., & Suseno. S. H. (2023). Antioxidant activity and potential bioactive peptides from skin protein hydrolysate of yellowfin tuna (Thunnus albacares). Jurnal Ilmiah Perikanan dan Kelautan, 15(2):248-263.
- Rendon-Rosales, M. Á., Torres-Llanez, M. J., González-Córdova, A. F., Hernández-Mendoza, A., Mazorra-Manzano, M. A., & Vallejo-Cordoba, B. (2019). In vitro antithrombotic and hypocholesterolemic activities of milk fermented with specific strains of Lactococcus lactis. Nutrients, 11(9):1-15.
- Rinto, R., Nopianti, R., Herpandi, & Oktaviani, S. (2017). Fractionation of anticholesterol bioactive compounds from bekasam (Indonesian fermented fish product). Pertanika: Tropical Agricultural Science, 40(3):399-406.
- Rinto, R., Baehaki, A., & Subarka, H. (2019). Study of antioxidant aktivity, anticolestrol and antihypertence of extract Rusip. Jurnal Fishtech, 8(1):18-27.
- Rinto, R., Widiastuti, I., & Samudera, B. T. (2021). Novel antihypertension bioactive compounds from Rusip. IOP Conference Series: Earth and Environmental Science, 810(1):1-6.
- Rinto, R., Widiastuti, I., Nugroho, G. D., & Liastri, Y. (2023). Solvent selection for extraction of bioactive compound from bekasam with antioxidant and anticholesterol activities. IOP Conference Series: Earth and Environmental Science, 1137(1):1-5.
- Rizkaprilisa, W., & Hapsari, M. W. (2022). Potential of ACE inhibitor from tempe koro-koroan as antihypertensive functional food. Science, Technology and Management Journal, 2(1):20-25.
- Romulo, A., & Surya, R. (2021). Tempe: A traditional fermented food of Indonesia and its health benefits. International Journal of Gastronomy and Food Science, 26(4):1-9.
- Rutherfurd-Markwick, K. J. (2012). Food proteins as a source of bioactive peptides with diverse functions. British Journal of Nutrition, 108(2):1-9.
- Sanchez, A., & Vazquez, A. (2017). Bioactive peptides: A review. Food Quality and Safety, 1(1):29-46.
- Sa’pang, M., Salam, A., Harna, H., Rahmayanti A., Seprianto, S., Nurmalasari, M., Ruhmayanti, N. A., & Swamilaksita, P. D. (2023). An explorative study of Indonesian traditional cheese “dangke” as high protein food from Enrekang, South Sulawesi. Poltekita : Jurnal Ilmu Kesehatan, 17(3):955-965.
- Sarmadi, B. H., & Ismail, A. (2010). Antioxidative peptides from food proteins: A review. Peptides, 31(10):1949-1956.
- Sasmita, S., Djabi, Y., Yustisia, I., Malaka, R., Kurniawan, L. B., Aminuddin, A., & Kurnia, S. (2023). Potential use of fermented dangke cheese to improve glycemic control in rats fed with high-fat glucose diet and propylthiouracil. Azerbaijan Medical Journal, 63(1):7089-7096.
- Sato, K., Miyasaka, S., Tsuji, A., & Tachi, H. (2018). Isolation and characterization of peptides with dipeptidyl peptidase IV (DPPIV) inhibitory activity from natto using DPPIV from Aspergillus oryzae. Food Chemistry, 261(24):51-56.
- Setiarto, R. H. B., & Herlina, V. T. (2024). Exploring bekasam, an indigenous fermented fish product of Indonesia: Original South Sumatra Region. Journal of Ethnic Foods, 11(18):1-14.
- Sharma, R., Garg, P., Kumar, P., Bhatia, S. K., & Kulshrestha, S. (2020). Microbial fermentation and its role in quality improvement of fermented foods. Fermentation, 6(4):1-20.
- Sharma, S., Singh, R., & Rana, S. (2011). Bioactive peptides: A review. International Journal Bioautomation, 15(4):223-250.
- Shen, W., & Matsui, T. (2019). Intestinal absorption of small peptides: A review. International Journal of Food Science and Technology, 54(6):1942-1948.
- Shi, Y., Wei, G., & Huang, A. (2021). Simulated in vitro gastrointestinal digestion of traditional Chinese Rushan and Naizha Cheese: Peptidome profiles and bioactivity elucidation. Food Research International, 142(4):1-10.
- Silva, M., Philadelpho, B., Santos, J., Souza, V., Souza, C., Santiago, V., Silva, J., Souza, C., Azeredo, F., Castilho, M., Cilli, E., & Ferreira, E. (2021). IAF, QGF, and QDF peptides exhibit cholesterol-lowering activity through a statin-like HMG-Coa reductase regulation mechanism: In silico and in vitro approach. International Journal of Molecular Sciences, 22(20):1-19.
- Sionek, B., Szydłowska, A., Küçükgöz, K., & Kołożyn-Krajewska, D. (2023). Traditional and new microorganisms in lactic acid fermentation of food. Fermentation, 9(12):1-21.
- Sitanggang, A. B., Lesmana, M., & Budijanto, S. (2020). Membrane-based preparative methods and bioactivities mapping of tempe-based peptides. Food Chemistry, 329(28):1-10.
- Soares, R. A. M., Mendonça, S., de Castro, L. Í. A., Menezes, A. C. C. C. C., & Arêas, J. A. G. (2015). Major peptides from amaranth (Amaranthus cruentus) protein inhibit HMG-Coa reductase activity. International Journal of Molecular Sciences, 16(2):4150-4160.
- Soenarno, M. S., Polii, B. N., Febriantosa, A., & Hanifah, R. (2013). Biopeptide identification of Indonesian fermented and processed milk as functional food. Jurnal Ilmu Produksi Dan Teknologi Hasil Ternak, 1(3):191-195.
- Strauss, J., Kadilak, A., Cronin, C., Mello, C. M., & Camesano, T. A. (2010). Binding, inactivation, and adhesion forces between antimicrobial peptide cecropin P1 and pathogenic E. Coli. Colloids and Surfaces B: Biointerfaces, 75(1):156-164.
- Surono, I. S. (2016). Ethnic fermented foods and beverages of Indonesia. Ethnic Fermented Foods and Alcoholic Beverages of Asia, 341–382.
- Surya, R. (2024). Fermented foods of Southeast Asia other than soybean or seafood-based ones. Journal of Ethnic Foods, 11(27):1-23.
- Surya, R., & Romulo, A. (2023). Antioxidant profile of red oncom, an indonesian traditional fermented soyfood. Food Research, 7(4):204-210.
- Syahriati, Nur Fitriani, U. A., & Yusuf, M. (2021). Determination of volatile compounds on traditional fermentation of chao teri. IOP Conference Series: Earth and Environmental Science, 819(1):1-7.
- Taha, S., El Abd, M., De Gobba, C., Abdel-Hamid, M., Khalil, E., & Hassan, D. (2017). Antioxidant and antibacterial activities of bioactive peptides in buffalo’s yoghurt fermented with different starter cultures. Food Science and Biotechnology, 26(5):1325-1332.
- Tang, W., Zhang, H., Wang, L., & Qian, H. (2014). Membrane-disruptive property of a novel antimicrobial peptide from anchovy (Engraulis japonicus) hydrolysate. International Journal of Food Science and Technology, 49(4):969-975.
- Tamam, B., Syah, D., Lioe, H. N., Suhartono, M. T., Kusuma, W. A., & Suratiah. (2021). Bioactive peptides from tempeh using peptidecutter’s cleavage. Bioinformatics and Biomedical Research Journal, 3(2):35-40.
- Tamam, B., Syah, D., Lioe, H. N., Suhartono, M. T., & Kusuma, W. A. (2018). Some sequence-based characterizers for recognizing the functional properties of bioactive peptides: An exploratory study. Jurnal Teknologi Dan Industri Pangan, 29(1):1-9.
- Tamam, B., Syah, D., Suhartono, M. T., Kusuma, W. A., Tachibana, S., & Lioe, H. N. (2019). Proteomic study of bioactive peptides from tempe. Journal of Bioscience and Bioengineering, 128(2):241-248.
- Tamang, J. P., Shin, D. H., Jung, S. J., & Chae, S. W. (2016). Functional properties of microorganisms in fermented foods. Frontiers in Microbiology, 7(1):1-13.
- Tang, W., Zhang, H., Wang, L., Qian, H., & Qi, X. (2015). Targeted separation of antibacterial peptide from protein hydrolysate of anchovy cooking wastewater by equilibrium dialysis. Food Chemistry, 168(3):115-123.
- Taniguchi, M., Aida, R., Saito, K., Ochiai, A., Takesono, S., Saitoh, E., & Tanaka, T. (2019). Identification and characterization of multifunctional cationic peptides from traditional Japanese fermented soybean natto extracts. Journal of Bioscience and Bioengineering, 127(4):472-478.
- Tonolo, F., Moretto, L., Folda, A., Scalcon, V., Bindoli, A., Bellamio, M., Feller, E., & Rigobello, M. P. (2019). Antioxidant properties of fermented soy during shelf life. Plant Foods for Human Nutrition, 74(3):287-292.
- Tonolo, F., Sandre, M., Ferro, S., Folda, A., Scalcon, V., Scutari, G., Feller, E., Marin, O., Bindoli, A., & Rigobello, M. P. (2018). Milk-derived bioactive peptides protect against oxidative stress in a caco-2 cell model. Food & Function, 9(2):1245-1253.
- Trapsilo, P. A. E., Hariati, A. M., & Sulistiati,T. D. (2020). The difference in Lactobacillus plantarum density on the fermentation process of cassava leaves (Manihotutillisima) as substance for plant-based protein. Jurnal Ilmiah Perikanan dan Kelautan, 12(2):324-329.
- Ulug, S. K., Jahandideh, F., & Wu, J. (2021). Novel technologies for the production of bioactive peptides. Trends in Food Science and Technology, 108(2):27-39.
- Walther, B., & Sieber, R. (2011). Bioactive proteins and peptides in foods. International Journal for Vitamin and Nutrition Research, 81(2-3):181-192.
- Watanabe, N., Endo, Y., Fujimoto, K., & Aoki, H. (2006). Tempeh-like fermented soybean (GABA-Tempeh) has an effective influence on lipid metabolism in rats. Journal of Oleo Science, 55(8):391-396.
- Wenno, M. R., Suprayitno, E., Aulanniam, A., & Hardoko, H. (2016). The physicochemical characteristics and angiotensin converting enzyme (ACE) inhibitory activity of skipjack tuna (Katsuwonus pelamis) “bakasang”. Jurnal Teknologi, 78(4-2):1-7.
- Wikandari, R. P., & Yuanita, L. (2016). The effect of degradation of proteolitic enzyme on angiotensin converting enzyme inhibitor activity of bekasam with Lactobacillus plantarum B1765. Agritech, 36(2):170-175.
- Wikandari, P. R., Suparmo, Marsono, Y., & Rahayu, E. (2011). The potency of milkfish (Chanos chanos) bekasam as source of angiotensin I converting enzyme inhibitor. Journal of Biota, 16(1):145-152.
- Wirawati, C. U. (2018). Characteristic and development of cow’s milk dadih as an alternate of buffalo’s milk dadih. Indonesian Bulletin of Animal and Veterinary Sciences, 27(2):95-103.
- Yan, J., Zhao, J., Yang, R., & Zhao, W. (2019). Bioactive peptides with antidiabetic properties: A review. International Journal of Food Science and Technology, 54(6):1909-1919.
- Yang, Q., Cai, X., Yan, A., Tian, Y., Du, M., & Wang, S. (2020). A specific antioxidant peptide: Its properties in controlling oxidation and possible action mechanism. Food Chemistry, 327(26):1-9.
- Yu, D., Feng, M., Sun, J., Xu, X., & Zhou, G. (2020). Protein degradation and peptide formation with antioxidant activity in pork protein extracts inoculated with Lactobacillus plantarum and Staphylococcus simulans. Meat Science, 160(2):1-8.
- Yusuf, M., Nur Fitriani, U. A., Syahriati, Saleh, R., Tasir, & Syamsuar. (2022). Dangke: Local indigenous cheese from Enrekang, South Sulawesi Indonesia. IOP Conference Series: Earth and Environmental Science, 1097(1):1-8.
- Zakariah, M. A., Malaka, R., Laga, A., Ako, A., Zakariah, M., & Mauliah, F. U. (2022). Quality and storage time of traditional dangke cheese inoculated with indigenous lactic acid bacteria isolated from Enrekang District, South Sulawesi, Indonesia. Biodiversitas, 23(6):3270-3276.
- Zaky, A. A., Gandara, J. S., Eun, J. B., Shim, J. H., & Abd El-Aty, A. M. (2022). Bioactivities, applications, safety, and health benefits of bioactive peptides from food and by-products: A review. Frontiers in Nutrition, 8(1):1-18.
- Zambrowicz, A., Eckert, E., Pokora, M., Bobak, Ł., Dąbrowska, A., Szołtysik, M., Trziszka, T., & Chrzanowska, J. (2015). Antioxidant and antidiabetic activities of peptides isolated from a hydrolysate of an egg-yolk protein by-product prepared with a proteinase from Asian pumpkin (Cucurbita ficifolia). RSC Advances, 5(14):10460-10467.
- Zannou, O., Agossou, D. J., Miassi, Y., Agani, O. B., Aisso, M. D., Chabi, I. B., Kpoclou, Y. E, Azokpota, P., & Koca, I. (2022). Traditional fermented foods and beverages: Indigenous practices of food processing in Benin Republic. International Journal of Gastronomy and Food Science, 27(1):1-15.
- Zhang, J. B., Zhao, Y. Q., Wang, Y. M., Chi, C. F., & Wang, B., (2019). Eight collagen peptides from hydrolysate fraction of Spanish mackerel skins: Isolation, identification, and in vitro antioxidant activity evaluation. Marine Drugs, 17(4):1-13.
- Zhang, L., Li, Z., Ye, X., Chen, Z., & Chen, Z. S. (2021). Mechanisms of thrombosis and research progress on targeted antithrombotic drugs. Drug Discovery Today, 26(10):2282-2302.
- Zhao, S., Han, J., Bie, X., Lu, Z., Zhang, C., & Lv, F. (2016). Purification and characterization of plantaricin JLA-9: A novel bacteriocin against Bacillus spp. produced by Lactobacillus plantarum JLA-9 from Suan-Tsai, a traditional Chinese fermented cabbage. Journal of Agricultural and Food Chemistry, 64(13):2754-2764.
- Zou, T. B., He, T. P., Li, H. B., Tang, H. W., & Xia, E. Q. (2016). The structure-activity relationship of the antioxidant peptides from natural proteins. Molecules, 21(1):1-14.
References
Abdel-Hamid, M., Otte, J., De Gobba, C., Osman, A., & Hamad, E. (2017). Angiotensin i-converting enzyme inhibitory activity and antioxidant capacity of bioactive peptides derived from enzymatic hydrolysis of buffalo milk proteins. International Dairy Journal, 66(3):91-98.
Abd-Talib, N., Yaji, E. L. A., Wahab, N. S. A., Razali, N., Len, K. Y. T., Roslan, J., Saari, N., & Pa’ee, K. F. (2022). Bioactive peptides and its alternative processes: A review. Biotechnology and Bioprocess Engineering, 27(3):306-335.
Abdelhedi, O., & Nasri, M. (2019). Basic and recent advances in marine antihypertensive peptides: Production, structure-activity relationship and bioavailability. Trends in Food Science and Technology, 88(6):543-557.
Agustiari, N. M., Anggrahini, S., & Ningrum, A. (2019). Influences of palm sugar, fermentation time and enzyme hydrolysis on activities of angiotensin converting enzyme inhibitory (ace-i) in joruk oci fish (Rastrelliger kanagurta) hydrolyzate. Pakistan Journal of Nutrition, 18(12):1094-1100.
Agustina, R. K., Dieny, F. F., Rustanti, N., Anjani, G., & Afifah, D. N. (2018). Antioxidant activity and soluble protein content of tempeh gembus hydrolysate. Hiroshima Journal of Medical Science, 67(1):1-7.
Agyei, D., Tsopmo, A., & Udenigwe, C. C. (2018). Bioinformatics and peptidomics approaches to the discovery and analysis of food-derived bioactive peptides. Analytical and Bioanalytical Chemistry, 410(15):3463-3472.
Auwal, S. M., Abidin, N. Z., Zarei, M., Tan, C. P., & Saari, N. (2019). Identification, structure activity relationship and in silico molecular docking analyzes of five novel angiotensin I-converting enzyme (ACE) inhibitory peptides from stone fish (Actinopyga lecanora) hydrolysates. PLoS ONE, 14(1):1-18.
Ahnan-Winarno, A. D., Cordeiro, L., Winarno, F. G., Gibbons, J., & Xiao, H. (2021). Tempeh: A semicentennial review on its health benefits, fermentation, safety, processing, sustainability, and affordability. Comprehensive Reviews in Food Science and Food Safety, 20(2):1717-1767.
Akbarian, M., Khani, A., Eghbalpour, S., & Uversky, V. N. (2022). Bioactive peptides: Synthesis, sources, applications, and proposed mechanisms of action. International Journal of Molecular Sciences, 23(3):1-30.
Anggrahini, S., Setyaningsih, W., Ningrum, A., Anto, & Agustiari, N. M. (2020). Physicochemical properties of oci fish joruk (Rastrelliger kanagurta) and the antioxidant activity of joruk hydrolysate. Food Research, 4(3):786-792.
Antara, N. S., Sujaya, I. N., Yokota, A., Asano, K., Aryanta, W. R., & Tomita, F. (2002). Identification and succession of lactic acid bacteria during fermentation of “urutan”, a Balinese indigenous fermented sausage. World Journal of Microbiology and Biotechnology, 18(3):255-262.
Arnold, M., Rajagukguk, Y. V., & Michałowska, A. G. (2021). Characterization of dadih: Traditional fermented buffalo milk of Minangkabau. Beverages, 7(60):1-16.
Baehaki, A., Nopianti, R., Nofriansyah, H., & Gofar, H. (2024). Isolation and production of proteases from bacteria isolate from bekasam and rusip (traditional food from South Sumatera, Indonesia). World Journal of Advanced Research and Reviews, 21(3):1719-1724.
Bashir, K. M. I., Sohn, J. H., Kim, J. S., & Choi, J. S. (2020). Identification and characterization of novel antioxidant peptides from mackerel (Scomber japonicus) muscle protein hydrolysates. Food Chemistry, 323(22):1-8.
Banihashemi, S. A., Nikoo, M., Ghasempour, Z., & Ehsani, A. (2020). Bioactive peptides fractions from traditional Iranian Koopeh cheese; lactic fermentation products. Biocatalysis and Agricultural Biotechnology, 29(7):1-7.
Caner, S., Zhang, X., Jiang, J., Chen, H. M., Nguyen, N. T., Overkleeft, H., Brayer, G. D., & Withers, S. G. (2016). Glucosyl epi-cyclophellitol allows mechanism-based inactivation and structural analysis of human pancreatic α-amylase. FEBS Letters, 590(8):1143-1151.
Chai, K. F., Voo, A. Y. H., & Chen, W. N. (2020). Bioactive peptides from food fermentation: A comprehensive review of their sources, bioactivities, applications, and future development. Comprehensive Reviews in Food Science and Food Safety, 19(6):3825-3885.
Chalid, S. Y., Nurbayti, S., & Pratama, A. F. (2018). ACE angiotensin converting enzyme (ACE) inhibitory activity of protein fraction of fermented buffalo milk (Bubalus bubalis). Jurnal Ilmu Kefarmasian Indonesia, 16(2):214-224.
Chakrabarti, S., Guha, S., & Majumder, K. (2018). Food-derived bioactive peptides in human health: Challenges and opportunities. Nutrients, 10(11);1-17.
Chalamaiah, M., Ulug, S. K., Hong, H., & Wu, J. (2019). Regulatory requirements of bioactive peptides (protein hydrolysates) from food proteins. Journal of Functional Foods, 58(7):123-129.
Chalid, S. Y., & Hartiningsih, F. (2013). The potential of fermented buffalo milk curd as an antioxidant and antibacterial. Prosiding Semirata FMIPA Universitas Lampung, 1(1):369-375.
Chalid, S. Y., Kinasih, P. N., Hatiningsih, F., & Rudiana, T. (2021). Antioxidant activities and profile of amino acid of yoghurt from beef milk fermentation with dadih starter. Jurnal Kimia Valensi, 7(1): 58-68.
Chaudhury, A., Duvoor, C., Dendi, V. S. R., Kraleti, S., Chada, A., Ravilla, R., Marco, A., Shekhawat, N. S., Montales, M. T., Kuriakose, K., Sasapu, A., Beebe, A., Patil, N., Musham, C. K., Lohani, G. P., & Mirza, W. (2017). Clinical review of antidiabetic drugs: Implications for type 2 diabetes mellitus management. Frontiers in Endocrinology, 8(1):1-12.
Cheng, S., Yuan, L., Gao, R. L., Chen, S., Li, H., & Du, M. (2024). Nutrition and cardiovascular disease: The potential role of marine bioactive proteins and peptides in thrombosis prevention. Journal of Agricultural and Food Chemistry, 72(13):6815-6832.
Chi, C. H., & Cho, S. J. (2016). Improvement of bioactivity of soybean meal by solid-state fermentation with Bacillus amyloliquefaciens versus Lactobacillus spp. and Saccharomyces cerevisiae. LWT Food Science and Technology, 68(4):619-625.
Choi, K. Y., Chow, L. N. Y., & Mookherjee, N. (2012). Cationic Host Defence Peptides: Multifaceted Role In Immune Modulation And Inflammation. Journal of Innate Immunity, 4(4), 361–370.
Chourasia, R., Abedin, M. M., Phukon, L. C., Sahoo, D., Singh, S. P., & Rai, A. K. (2021). Biotechnological approaches for the production of designer cheese with improved functionality. Comprehensive Reviews in Food Science and Food Safety, 20(1):960-979.
Chourasia, R., Phukon, L. C., Abedin, M. M., Padhi, S., Singh, S. P., & Rai, A. K. (2023). Bioactive peptides on fermented foods and their application: A critical review. Systems Microbiology and Biomanufacturing, 3(1):88-109.
Ding, Q., Sheikh, A. R., Chen, Q., Hu, Y., Sun, N., Su, X., Luo, L., Ma, H., & and He, R. (2023). Understanding the mechanism for the structure-activity relationship of food-derived ACEI peptides. Food Reviews International, 39(4):1751-1769.
Vo, T. D. L., Pham, T. K., & Ha, Q. (2018). Recovery of proteolysate from salmon by-product: Investigation of antioxidant activity, optimization of hydrolysis, determination of iron-binding activity and identification of bioactive peptides. The International Journal of Engineering and Science (IJES), 7(9):18-30.
Dziuba, B., & Dziuba, M. (2014). Milk protein-derived bioactive peptides in dairy product: Molecular, biological, and methodological aspect. Acta Science Polonorum Technologia Alimentaria, 13(1):5-25.
Elfahri, K. R., Donkor, O. N., & Vasiljevic, T. (2014). Potential of novel Lactobacillus helveticus strains and their cell wall bound proteases to release physiologically active peptides from milk proteins. International Dairy Journal, 38(1):37-46.
El-Fattah, A. A., Sakr, S., El-Dieb, S., & Elkashef, H. (2016). Angiotensin-converting enzyme inhibition and antioxidant activity of commercial dairy starter cultures. Food Science and Biotechnology, 25(6):1745-1751.
Erdmann, K., Cheung, B. W. Y., & Schröder, H. (2008). The possible roles of food-derived bioactive peptides in reducing the risk of cardiovascular disease. Journal of Nutritional Biochemistry, 19(10):643-654.
Fajri, L. N., Suciati, S., Fakhrudin, I. A., Silvita, S., Prasetyo, O., & Rachman, H. T. (2024). Analysis of scientific knowledge on the process of making tempeh gembus as local wisdom and its potential for empowering students’ analytical thinking skills. Jurnal Pendidikan Sains Indonesia, 12(3):575-596.
Fitzgerald, R., Murray, B., & Walsh, D. (2004). The emerging role of dairy proteins and bioactive peptides in nutrition and health hypotensive peptides from milk proteins. American Society of Nutritional Sciences, 1-9.
Friedman M. In: Process-induced food toxicants: Occurrence, formation, mitigation, and health risks. 1 ed. Stadler R.H., Lineback D.R., editors. John Wiley & Sons; 2008. Alkali and/or acid treatment: Dietary significance of processing-induced lysinoalanine in food; pp. 473–508.
García-Moreno, P. J., Espejo-Carpio, F. J., Guadix, A., & Guadix, E. M. (2015). Production and identification of angiotensin I-converting enzyme (ACE) inhibitory peptides from Mediterranean Fish discards. Journal of Functional Foods, 18(7):95-105.
Gavrish, E., Bollmann, A., Epstein, S., & Lewis, K. (2008). A trap for in situ cultivation of filamentous actinobacteria. Journal of Microbiological Methods, 72(3):257-262.
Gibbs, B. F., Zougman, A., Masse, R., & Mulligan, C. (2004). Production and characterization of bioactive peptides from soy hydrolysate and soy-fermented food. Food Research International, 37(2):123-131.
Girgih, A. T., He, R., Malomo, S., Offengenden, M., Wu, J., & Aluko, R. E. (2014). Structural and functional characterization of hemp seed (Cannabis Sativa L.) protein-derived antioxidant and antihypertensive peptides. Journal of Functional Foods, 6(1):384-394.
Gui, M., Gao, L., Rao, L., Li, P., Zhang, Y., Han, J. W., Li, J. (2022). Bioactive peptides identified from enzymatic hydrolysates of sturgeon skin. Journal of the Science of Food and Agriculture, 102(5):1948-1957.
Grau-Campistany, A., Strandberg, E., Wadhwani, P., Reichert, J., Bürck, J., Rabanal, F., & Ulrich, A. S. (2015). Hydrophobic mismatch demonstrated for membranolytic peptides, and their use as molecular rulers to measure bilayer thickness in native cells. Scientific Reports, 5(1):1-9.
Guo, Q., Chen, P., & Chen, X. (2023). bioactive peptides derived from fermented foods: Preparation And biological activities. Journal of Functional Foods, 101(2):1-21.
Ha, G. E., Chang, O. K., Jo, S. M., Han, G. S., Park, B. Y., Ham, J. S., & Jeong, S. G. (2015). Identification of antihypertensive peptides derived from low molecular weight casein hydrolysates generated during fermentation by bifidobacterium longum KACC 91563. Korean Journal for Food Science of Animal Resources, 35(6):738-747.
Handayani, M. T., Indrati, R., & Cahyanto, M. N. (2020). Chemical characteristics and activity of ACE inhibitors on fractionation of tempeh koro kratok (Phaseolus lunatus) peptides. Indonesian Food and Nutrition Progress, 16(2):42-46.
Harnedy-Rothwell, P. A., McLaughlin, C. M., O’Keeffe, M. B., Le Gouic, A. V., Allsopp, P. J., McSorley, E. M., Sharkey, S., Whooley, J., McGovern, B., O’Harte, F. P. M., & FitzGerald, R.J. (2020). Identification and characterisation of peptides from a boarfish (Capros aper) protein hydrolysate displaying in vitro dipeptidyl peptidase- IV (DPP-IV) inhibitory and insulinotropic activity. Food Research International. 131(5):1-8.
Harris, F., Dennison, S. R., & Phoenix, D. A. (2009). Anionic antimicrobial peptides from eukaryotic organisms. Current Protein & Peptide Science, 10(6):585-606.
Hati, S., Patel, N., Sakure, A., & Mandal, S. (2018). Influence of whey protein concentrate on the production of antibacterial peptides derived from fermented milk by lactic acid bacteria. International Journal of Peptide Research and Therapeutics, 24(1):87-98.
Herlina, V. T., Lioe, H. N., Kusumaningrum, H. D., & Adawiyah, D. R. (2022). Nutritional composition of tauco as Indonesian fermented soybean paste. Journal of Ethnic Foods, 9(44):1-17.
Herlina, V. T., & Setiarto, R. H. B. (2024a). From tradition to innovation: Dadih, the Minangkabau tribe’s traditional fermented buffalo milk from Indonesia. Journal of Ethnic Foods, 11(1):1-16.
Herlina, V. T., & Setiarto, R. H. B. (2024b). Terasi, exploring the indonesian ethnic fermented shrimp paste. Journal of Ethnic Foods, 11(7):1-13.
Herlina, V. T., & Setiarto, R. H. B. (2025). Unveiling the cultural tradition and science of Indonesian fermented ethnic soybean paste: Tauco. Journal of Ethnic Foods, 12(1):1-16.
Hernández-Ledesma, B., García-Nebot, M. J., Fernández-Tomé, S., Amigo, L., & Recio, I. (2014). Dairy protein hydrolysates: Peptides for health benefits. International Dairy Journal, 38(2):82-100.
Himaya, S. W. A., Ryu, B. M., Ngo, D. H., & Kim, S. K. (2012). Peptide isolated from japanese flounder skin gelatin protects against cellular oxidative damage. Journal of Agricultural and Food Chemistry, 60(36):9112-9119.
Holton, T. A., Vijayakumar, V., & Khaldi, N. (2013). Bioinformatics: Current perspectives and future directions for food and nutritional research facilitated by a food-wiki database. Trends in Food Science and Technology, 34(1):5-17.
Hong, H., Zheng, Y., Song, S., Zhang, Y., Zhang, C., Liu, J., Luo, Y. (2020). Identification and characterization of DPP-IV inhibitory peptides from silver carp swim bladder hydrolysates. Food Bioscience. 38(6):1-10.
Intarasirisawat, R., Benjakul, S., Wu, J., & Visessanguan, W. (2013). Isolation of antioxidative and ACE inhibitory peptides from protein hydrolysate of skipjack (Katsuwana pelamis) roe. Journal of Functional Foods, 5(4):1854-1862.
Jakubczyk, A., Karaś, M., Baraniak, B., & Pietrzak, M. (2013). The impact of fermentation and in vitro digestion on formation angiotensin converting enzyme (ACE) inhibitory peptides from pea proteins. Food Chemistry, 141(4):3774-3780.
Jatmiko, Y. D., Howarth, G. S., & Barton, M. D. (2017). Assessment of Probiotic Properties of Lactic Acid Bacteria Isolated from Indonesian naturally fermented milk. AIP Conference Proceedings, 1908(1):1-15.
Jeleń, H., Majcher, M., Ginja, A., & Kuligowski, M. (2013). Determination of compounds responsible for tempeh aroma. Food Chemistry, 141(1):459-465.
Jemil, I., Abdelhedi, O., Mora, L., Nasri, R., Aristoy, M. C., Jridi, M., Hajji, M., Toldrá, F., & Nasri, M. (2016). Peptidomic analysis of bioactive peptides in zebra blenny (Salaria basilisca) muscle protein hydrolysate exhibiting antimicrobial activity obtained by fermentation with Bacillus mojavensis A21. Process Biochemistry, 51(12):2186-2197.
Jin, R., Teng, X., Shang, J., Wang, D., & Liu, N. (2020). Identification of novel DPP–IV inhibitory peptides from Atlantic salmon (Salmo salar) skin. Food Research International, 133(7):1-10.
Karami, Z., & Akbari-adergani, B. (2019). Bioactive food derived peptides: A review on correlation between structure of bioactive peptides and their functional properties. Journal of Food Science and Technology, 56(2):535-547.
Ketnawa, S., Suwal, S., Huang, J. Y., & Liceaga, A. M. (2019). Selective separation and characterization of dual ACE and DPP-IV inhibitory peptides from rainbow trout (Oncorhynchus mykiss) protein hydrolysates. International Journal of Food Science Technology, 54(4):1062-1073.
Khan, M. U., Pirzadeh, M., Förster, C. Y., Shityakov, S., & Shariati, M. A. (2018). Role of milk-derived antibacterial peptides in modern food biotechnology: Their synthesis, applications and future perspectives. Biomolecules, 8(4):1-16.
Khirzin, M. H., Ton, S., & Sari, A. (2023). Quality of fermented goat meat (bekamal) with different fermentation times. Jurnal Ilmiah Multidisiplin, 2(8):3609-3619.
Kim, H. J., Kang, S. G., Jaiswal, L., Li, J., Choi, J. H., Moon, S. M., Cho, J. Y., & Ham, K. S. (2016). Identification of four new angiotensin I-converting enzyme inhibitory peptides from fermented anchovy sauce. Applied Biological Chemistry, 59(1):25-31.
Kleekayai, T., Harnedy, P. A., O’Keeffe, M. B., Poyarkov, A. A., Cunhaneves, A., Suntornsuk, W., & Fitzgerald, R. J. (2015). Extraction of antioxidant and ACE inhibitory peptides from Thai traditional fermented shrimp pastes. Food Chemistry, 176(11):441-447.
Koesoemawardani, D., Afifah, L. U., Herdiana, N., Suharyono, A. S., Fadhallah, E. G., & Ali, M. (2021). Microbiological, physical and chemical properties of joruk (fermented fish product) with different levels of salt concentration. Biodiversitas, 22(1):132-136.
Korhonen, H. (2009). Milk-derived bioactive peptides: From science to applications. Journal of Functional Foods, 1(2):177-187.
Kuba, M., Shinjo, S., & Yasuda, M. (2004). Antihypertensive and hypocholesterolemic effects of tofuyo in spontaneously hypertensive rats. Journal of Health Science, 50(6):1-4.
Kumari, R., Sanjukta, S., Sahoo, D., & Rai, A. K. (2022). Functional peptides in asian protein rich fermented foods : Production and health benefits. Systems Microbiology and Biomanufacturing, 2(1):1-13.
Kurnianto, M. A., Defri, I., Syahbanu, F., & Aulia, S. S. (2024). Fish-derived bioactive peptide: Bioactivity potency, structural characteristics, and conventional and bioinformatics approaches for identification. Future Foods, 9(1):1-15.
Kurnianto, M. A., Puspita, A. A., Winarti, S., Munarko, H., Aulia, S. S., & Rini, D. M. (2025). Traditional fermented anchovy rusip demonstrates antidiabetic effects through enzyme inhibition and metabolic improvement in diabetic rats. Biodiversitas, 26(5):2278-2288.
Kurnianto, M. A., Syahbanu, F., Hamidatun, H., Defri, I., & Sanjaya, Y. A. (2023). Prospects of bioinformatics approach for exploring and mapping potential bioactive peptide of rusip (the traditional Indonesian fermented anchovy): A review. Advances in Food Science, Sustainable Agriculture and Agroindustrial Engineering, 6(2):116-133.
Kurnianto, M. A., Lioe, H. N., Chasanah, E., & Kusumaningrum, H. D. (2022). Purification, HR-LC-ESI-MS-MS identification, and peptide prediction of bacteriocin-like inhibitory substances produced by Streptomyces sp. isolated from Chanos chanos. International Journal of Food Science, 2022(1):1-14.
Kurnianto, M. A., Adirama, S. I., Xu, W., Winarti, S., & Rini, D. M. (2025). Enhancing the quality of traditional Indonesian shrimp paste (trasi) through Tetragenococcus halophilus 54M106-3 inoculation: Physicochemical, sensory, and bioactivity insights. Foods, 14(14):1-18.
Kusumaningtyas, E., & Utami, A. (2020). Antioxidant Activity of Soluble Protein from Natural Fermented Buffalo Milk. IOP Conference Series: Earth and Environmental Science, 457(1):1-7.
Lei, J., Sun, L., Huang, S., Zhu, C., Li, P., He, J., Mackey, V., Coy, D. H., & He, Q. (2019). The antimicrobial peptides and their potential clinical applications. American Journal of Translational Research, 11(7):3919-3931.
Leonard, W., Zhang, P., Ying, D., Adhikari, B., & Fang, Z. (2021). Fermentation transforms the phenolic profiles and bioactivities of plant-based foods. Biotechnology Advances, 49(4):1-16.
Liang, Y., Zhang, X., Yuan, Y., Bao, Y., & Xiong, M. (2020). Role and modulation of the secondary structure of antimicrobial peptides to improve selectivity. Biomaterials Science, 8(24):6858-6866.
Li-Chan, E. C. Y. (2015). Bioactive peptides and protein hydrolysates: Research trends and challenges for application as nutraceuticals and functional food ingredients. Current Opinion in Food Science, 1(1):28-37.
Lima, K. O., de Quadros, C., Rocha, M., de Lacerda, J. T. J. G., Juliano, M. A., Dias, M., Mendes, M. A., & Prentice, C. (2019). Bioactivity and bioaccessibility of protein hydrolyzates from industrial byproducts of stripped weakfish (Cynoscion guatucupa). LWT, 111(13):408-413.
Limón, R. I., Peñas, E., Torino, M. I., Martínez-Villaluenga, C., Dueñas, M., & Frias, J. (2015). Fermentation enhances the content of bioactive compounds in kidney bean extracts. Food Chemistry, 172(7):343-352.
Liu, G., Ren, L., Song, Z., Wang, C., & Sun, B. (2015). Purification and characteristics of bifidocin A, a novel bacteriocin produced by Bifidobacterium animals BB04 from centenarians’ intestine. Food Control, 50(4):889-895.
Liu, Q., Kong, B., Xiong, Y. L., & Xia, X. (2010). Antioxidant activity and functional properties of porcine plasma protein hydrolysate as influenced by the degree of hydrolysis. Food Chemistry, 118(2):403-410.
Liu, R., Kim, A. H., Kwak, M. K., & Kang, S. O. (2017). Proline-based cyclic dipeptides from Korean fermented vegetable kimchi and from Leuconostoc mesenteroides LBP-Ko6 have activities against multidrug-resistant bacteria. Frontiers in Microbiology, 8(1):1-15.
Mahdi, C., Untari, H., & Padaga, M. C. (2018). Identification and characterization of bioactive peptides of fermented goat milk as a sources of antioxidant as a therapeutic natural product. IOP Conference Series: Materials Science and Engineering, 299(1):1-7.
Marlida, Y., Susalam, M. K., Harnentis, H., Jamsari, J., Huda, N., Noordin, W. N. M., Anggraini, L., & Ardani, L. R. (2023). Metagenomic analysis and biodiversity of bacteria in traditional fermented fish or budu from West Sumatera, Indonesia. Journal of Advanced Veterinary and Animal Research, 10(4):801-808.
Maruddin, F., Ratmawati, R., Fahrullah, F., & Taufik, M. (2018). Characteristics of edible film based dangke whey with carrageenan addition. Jurnal Veteriner, 19(2):291-297.
Materia, V. C., Linnemann, A. R., Smid, E. J., & Schoustra, S. E. (2021). Contribution of traditional fermented foods to food systems transformation: Value addition and inclusive entrepreneurship. Food Security, 13(5):1163-1177.
Maulid, A., & Ciptandi, F. (2023). Exploring traditional dadiah food as a part of cultural identity and sustainability in Minangkabau tribe tourism. Tourism Research Journal, 7(2):1-12.
Mckerchar, H., Dyer, J. M., Gerrard, J. A., Maes, E., Clerns, S., & Dobson, R. C. J. (2023). Characterizing lysinoalanine crosslinks in food systems: Discovery of a diagnostic ion in model peptides using MALDI mass spectrometry. Food Chemistry X, 19(3):1-11.
Minkiewicz, P., Iwaniak, A., & Darewicz, M. (2019). BIOPEP-UWM database of bioactive peptides: Current opportunities. International Journal of Molecular Sciences, 20(23):1-23.
Mirdhayati, I., & Zain, W. N. H. (2020). Chemical characteristic, lactic acid bacteria population, and angiotensin converting enzyme inhibitory activity of traditional fermented beef “cangkuk” by spontaneous fermentation with the addition of bamboo shoot. Journal of the Indonesian Tropical Animal Agriculture, 45(3):222-233.
Mohanty, D., Jena, R., Choudhury, P. K., Pattnaik, R., Mohapatra, S., & Saini, M. R. (2016). Milk derived antimicrobial bioactive peptides: A review. International Journal of Food Properties, 19(4):837-846.
Montoya-Rodríguez, A., de Mejía, E. G., Dia, V. P., Reyes-Moreno, C., & Milán-Carrillo, J. (2014). Extrusion improved the anti-inflammatory effect of amaranth (Amaranthus hypochondriacus) hydrolysates in LPS-induced human THP-1 macrophage-like and mouse RAW 264.7 macrophages by preventing activation of NF-Κb signaling. Molecular Nutrition and Food Research, 58(5):1028-1041.
Moravej, H., Moravej, Z., Yazdanparast, M., Heiat, M., Mirhosseini, A., Moghaddam, M. M., & Mirnejad, R. (2018). Antimicrobial peptides: Features, action, and their resistance mechanisms in bacteria. Microbial Drug Resistance, 24(6):747-767.
Mudgil, P., Baby, B., Ngoh, Y. Y., Kamal, H., Vijayan, R., Gan, C. Y., & Maqsood, S. (2019). Molecular binding mechanism and identification of novel anti-hypertensive and anti-inflammatory bioactive peptides from camel milk protein hydrolysates. LWT, 112(14):1-12.
Mulyani, R., Adi, P., Setiawibawa, A. A., & Yang, J. J. (2022). Traditional Indonesian fermented products made from animal foods (meat and fish): A review. Journal of Applied Agriculture, Health and Technology, 1(2):34-48.
Murwani, R., Anggraeni, R., Setiawan, G. N. A., Astari, P. D., Cahyani, N. K. D., Sibero, M. T., & Ambariyanto, A. (2024). Lactic acid bacteria isolates and the microbiome of cincalok, tempoyak, and mandai: A traditional fermented food from Kalimantan Island, Indonesia. International Journal of Food Science, 2024(1):1-11.
Najafian, L., & Babji, A. S. (2014). Production of bioactive peptides using enzymatic hydrolysis and identification antioxidative peptides from patin (Pangasius sutchi) sarcoplasmic protein hydolysate. Journal of Functional Foods, 9(1):280-289.
Najafian, L., & Babji, A. S. (2018). Fractionation and identification of novel antioxidant peptides from fermented fish (pekasam). Journal of Food Measurement and Characterization, 12(3):2174-2183.
Najafian, L., & Babji, A. S. (2019). Purification and identification of antioxidant peptides from fermented fish sauce (budu). Journal of Aquatic Food Product Technology, 28(1):14-24.
Nongonierma, A. B., & FitzGerald, R. J. (2019). Features of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from dietary proteins. Journal of Food Biochemistry, 43(1):1-12.
Nirmal, N. P., Santivarangkna, C., Rajput, M. S., Benjakul, S., & Maqsood, S. (2022). Valorization of fish byproducts: Sources to end-product applications of bioactive protein hydrolyzate. Comprehensive Reviews in Food Science and Food Safety, 21(2):1803-1842.
Nofiani, R., & Ardiningsih, P. (2018). Physicochemical and microbiological profiles of commercial cincalok from West Kalimantan. Jurnal Pengolahan Hasil Perikanan, 21(2):243-249.
Nout, M. J. R., & Kiers, J. L. (2005). Tempe fermentation, innovation and functionality: Update into the third millenium. Journal of Applied Microbiology, 98(4):789-805.
Nur, F., Hatta, M., Natzir, R., & Djide, M. N. (2017). Isolation of lactic acid bacteria as a potential probiotic in dangke, a traditional food from Enrekang, Indonesia. International Journal of Sciences: Basic and Applied Research, 35(1):19-27.
Nuraida, L. (2015). A review : Health promoting lactic acid bacteria in traditional Indonesian fermented foods. Food Science and Human Wellness, 4(2):47-55.
Nurhayati, Y., Mat Rahim, N. N., Mohd Juhari, N. I., & Tang, J. Y. H. (2024). Physicochemical and proximate composition of cincalok (fermented shrimp) mixed with red onion powder, red chili pepper and musk lime juice. IOP Conference Series: Earth and Environmental Science, 1413(1):1-8.
Nurkolis, F., Qhabibi, F. R., Yusuf, V. M., Bulain, S., Praditya, G. N., Lailossa, D. G., Mahira, M. F. N. Al, Prima, E. N., Arjuna, T., Rahayu, S., Gunawan, W. B., Kartawidjajaputra, F., Subali, D., & Permatasari, H. K. (2022). Anticancer properties of soy-based tempe: A proposed opinion for future meal. Frontiers in Oncology, 12(1):1-5.
Nurmahdi, H., Prasetyawan, S., Wenno, M. R., & Aulanni’am. (2017). Antihypertension effect from bakasang’s peptide extract based on MDA levels in sera and Inos expression in cardiac tissue of rats hypertensive model. International Journal of Pharmaceutical and Clinical Research, 9(2):129-134.
Ohata, M., Uchida, S., Zhou, L., & Arihara, K. (2016). Antioxidant activity of fermented meat sauce and isolation of an associated antioxidant peptide. Food Chemistry, 194(5):1034-1039.
Oktarini, I. A., Purnomo, H., . Aulanni’am., & Radiati, L. E. (2019). Antioxidant activity, amino acid profile and microbial quality of bebontot, a Balinese traditional fermented chicken meat products. Majalah Ilmiah Peternakan, 22(3):1-11.
Olalere, O. A., Yap, P. G., & Gan, C. Y. (2023). Comprehensive review on some food-derived bioactive peptides with anti-hypertension therapeutic potential for angiotensin-converting enzyme (ACE) inhibition. Journal of Proteins and Proteomics, 14(2):129-161.
Oyama, M., Hung, T. V., Yoda, K., He, F., & Suzuki, T. (2017). A novel whey tetrapeptide IPAV reduces interleukin-8 production induced by TNF-Α in human intestinal caco-2 cells. Journal of Functional Foods, 35(8):376-383.
Padhi, S., Chourasia, R., Kumari, M., Singh, S. P., & Rai, A. K. (2022). Production and characterization of bioactive peptides from rice beans using Bacillus subtilis. Bioresource Technology, 351(10):1-8.
Patergnani, S., Danese, A., Bouhamida, E., Aguiari, G., Previati, M., Pinton, P., & Giorgi, C. (2020). Various aspects of calcium signaling in the regulation of apoptosis, autophagy, cell proliferation, and cancer. International Journal of Molecular Sciences, 21(21):1-27.
Persulessy, C. B., Kusdiyantini, E., Ferniah, R. S., Agustini, T. W., & Budiharjo, A. (2020). Ina sua: The traditional food fermentation from Teon Nila Serua, Central of Maluku, Indonesia. Journal of Ethnic Foods, 7(1):1-7.
Prihanto, A. A., Umam, N. I., & Bangun, J. D. G. (2024). Unveiling the secrets of Indonesian fermented fish: Characteristics of lactic acid bacteria, roles, and potential in product development. Food Bioscience, 61(5):1-15.
Pritchard, S. R., Phillips, M., & Kailasapathy, K. (2010). Identification of bioactive peptides in commercial cheddar cheese. Food Research International, 43(5):1545-1548.
Puspitojat, E., Cahyanto, M. N., Marsono, Y., & Indrati, R. (2019). Production of angiotensin-I-converting enzyme (ACE) inhibitory peptides during the fermentation of jack bean (Canavalia ensiformis) tempe. Pakistan Journal of Nutrition, 18(5):464-470.
Putri, T. R., Yuandini, S. A., Nada, G., & Simamora, C. J. K. (2021). Antiadherence and antimicrobial activity crude extracts bioactive peptides traditional dayak fermented food pekasam black tilapia (Oreochromis niloticus). International Conference of Indonesian Society for Lactic Acid Bacteria, 4(1):1-3.
Rachman, S. H., Santoso, J., & Suseno. S. H. (2023). Antioxidant activity and potential bioactive peptides from skin protein hydrolysate of yellowfin tuna (Thunnus albacares). Jurnal Ilmiah Perikanan dan Kelautan, 15(2):248-263.
Rendon-Rosales, M. Á., Torres-Llanez, M. J., González-Córdova, A. F., Hernández-Mendoza, A., Mazorra-Manzano, M. A., & Vallejo-Cordoba, B. (2019). In vitro antithrombotic and hypocholesterolemic activities of milk fermented with specific strains of Lactococcus lactis. Nutrients, 11(9):1-15.
Rinto, R., Nopianti, R., Herpandi, & Oktaviani, S. (2017). Fractionation of anticholesterol bioactive compounds from bekasam (Indonesian fermented fish product). Pertanika: Tropical Agricultural Science, 40(3):399-406.
Rinto, R., Baehaki, A., & Subarka, H. (2019). Study of antioxidant aktivity, anticolestrol and antihypertence of extract Rusip. Jurnal Fishtech, 8(1):18-27.
Rinto, R., Widiastuti, I., & Samudera, B. T. (2021). Novel antihypertension bioactive compounds from Rusip. IOP Conference Series: Earth and Environmental Science, 810(1):1-6.
Rinto, R., Widiastuti, I., Nugroho, G. D., & Liastri, Y. (2023). Solvent selection for extraction of bioactive compound from bekasam with antioxidant and anticholesterol activities. IOP Conference Series: Earth and Environmental Science, 1137(1):1-5.
Rizkaprilisa, W., & Hapsari, M. W. (2022). Potential of ACE inhibitor from tempe koro-koroan as antihypertensive functional food. Science, Technology and Management Journal, 2(1):20-25.
Romulo, A., & Surya, R. (2021). Tempe: A traditional fermented food of Indonesia and its health benefits. International Journal of Gastronomy and Food Science, 26(4):1-9.
Rutherfurd-Markwick, K. J. (2012). Food proteins as a source of bioactive peptides with diverse functions. British Journal of Nutrition, 108(2):1-9.
Sanchez, A., & Vazquez, A. (2017). Bioactive peptides: A review. Food Quality and Safety, 1(1):29-46.
Sa’pang, M., Salam, A., Harna, H., Rahmayanti A., Seprianto, S., Nurmalasari, M., Ruhmayanti, N. A., & Swamilaksita, P. D. (2023). An explorative study of Indonesian traditional cheese “dangke” as high protein food from Enrekang, South Sulawesi. Poltekita : Jurnal Ilmu Kesehatan, 17(3):955-965.
Sarmadi, B. H., & Ismail, A. (2010). Antioxidative peptides from food proteins: A review. Peptides, 31(10):1949-1956.
Sasmita, S., Djabi, Y., Yustisia, I., Malaka, R., Kurniawan, L. B., Aminuddin, A., & Kurnia, S. (2023). Potential use of fermented dangke cheese to improve glycemic control in rats fed with high-fat glucose diet and propylthiouracil. Azerbaijan Medical Journal, 63(1):7089-7096.
Sato, K., Miyasaka, S., Tsuji, A., & Tachi, H. (2018). Isolation and characterization of peptides with dipeptidyl peptidase IV (DPPIV) inhibitory activity from natto using DPPIV from Aspergillus oryzae. Food Chemistry, 261(24):51-56.
Setiarto, R. H. B., & Herlina, V. T. (2024). Exploring bekasam, an indigenous fermented fish product of Indonesia: Original South Sumatra Region. Journal of Ethnic Foods, 11(18):1-14.
Sharma, R., Garg, P., Kumar, P., Bhatia, S. K., & Kulshrestha, S. (2020). Microbial fermentation and its role in quality improvement of fermented foods. Fermentation, 6(4):1-20.
Sharma, S., Singh, R., & Rana, S. (2011). Bioactive peptides: A review. International Journal Bioautomation, 15(4):223-250.
Shen, W., & Matsui, T. (2019). Intestinal absorption of small peptides: A review. International Journal of Food Science and Technology, 54(6):1942-1948.
Shi, Y., Wei, G., & Huang, A. (2021). Simulated in vitro gastrointestinal digestion of traditional Chinese Rushan and Naizha Cheese: Peptidome profiles and bioactivity elucidation. Food Research International, 142(4):1-10.
Silva, M., Philadelpho, B., Santos, J., Souza, V., Souza, C., Santiago, V., Silva, J., Souza, C., Azeredo, F., Castilho, M., Cilli, E., & Ferreira, E. (2021). IAF, QGF, and QDF peptides exhibit cholesterol-lowering activity through a statin-like HMG-Coa reductase regulation mechanism: In silico and in vitro approach. International Journal of Molecular Sciences, 22(20):1-19.
Sionek, B., Szydłowska, A., Küçükgöz, K., & Kołożyn-Krajewska, D. (2023). Traditional and new microorganisms in lactic acid fermentation of food. Fermentation, 9(12):1-21.
Sitanggang, A. B., Lesmana, M., & Budijanto, S. (2020). Membrane-based preparative methods and bioactivities mapping of tempe-based peptides. Food Chemistry, 329(28):1-10.
Soares, R. A. M., Mendonça, S., de Castro, L. Í. A., Menezes, A. C. C. C. C., & Arêas, J. A. G. (2015). Major peptides from amaranth (Amaranthus cruentus) protein inhibit HMG-Coa reductase activity. International Journal of Molecular Sciences, 16(2):4150-4160.
Soenarno, M. S., Polii, B. N., Febriantosa, A., & Hanifah, R. (2013). Biopeptide identification of Indonesian fermented and processed milk as functional food. Jurnal Ilmu Produksi Dan Teknologi Hasil Ternak, 1(3):191-195.
Strauss, J., Kadilak, A., Cronin, C., Mello, C. M., & Camesano, T. A. (2010). Binding, inactivation, and adhesion forces between antimicrobial peptide cecropin P1 and pathogenic E. Coli. Colloids and Surfaces B: Biointerfaces, 75(1):156-164.
Surono, I. S. (2016). Ethnic fermented foods and beverages of Indonesia. Ethnic Fermented Foods and Alcoholic Beverages of Asia, 341–382.
Surya, R. (2024). Fermented foods of Southeast Asia other than soybean or seafood-based ones. Journal of Ethnic Foods, 11(27):1-23.
Surya, R., & Romulo, A. (2023). Antioxidant profile of red oncom, an indonesian traditional fermented soyfood. Food Research, 7(4):204-210.
Syahriati, Nur Fitriani, U. A., & Yusuf, M. (2021). Determination of volatile compounds on traditional fermentation of chao teri. IOP Conference Series: Earth and Environmental Science, 819(1):1-7.
Taha, S., El Abd, M., De Gobba, C., Abdel-Hamid, M., Khalil, E., & Hassan, D. (2017). Antioxidant and antibacterial activities of bioactive peptides in buffalo’s yoghurt fermented with different starter cultures. Food Science and Biotechnology, 26(5):1325-1332.
Tang, W., Zhang, H., Wang, L., & Qian, H. (2014). Membrane-disruptive property of a novel antimicrobial peptide from anchovy (Engraulis japonicus) hydrolysate. International Journal of Food Science and Technology, 49(4):969-975.
Tamam, B., Syah, D., Lioe, H. N., Suhartono, M. T., Kusuma, W. A., & Suratiah. (2021). Bioactive peptides from tempeh using peptidecutter’s cleavage. Bioinformatics and Biomedical Research Journal, 3(2):35-40.
Tamam, B., Syah, D., Lioe, H. N., Suhartono, M. T., & Kusuma, W. A. (2018). Some sequence-based characterizers for recognizing the functional properties of bioactive peptides: An exploratory study. Jurnal Teknologi Dan Industri Pangan, 29(1):1-9.
Tamam, B., Syah, D., Suhartono, M. T., Kusuma, W. A., Tachibana, S., & Lioe, H. N. (2019). Proteomic study of bioactive peptides from tempe. Journal of Bioscience and Bioengineering, 128(2):241-248.
Tamang, J. P., Shin, D. H., Jung, S. J., & Chae, S. W. (2016). Functional properties of microorganisms in fermented foods. Frontiers in Microbiology, 7(1):1-13.
Tang, W., Zhang, H., Wang, L., Qian, H., & Qi, X. (2015). Targeted separation of antibacterial peptide from protein hydrolysate of anchovy cooking wastewater by equilibrium dialysis. Food Chemistry, 168(3):115-123.
Taniguchi, M., Aida, R., Saito, K., Ochiai, A., Takesono, S., Saitoh, E., & Tanaka, T. (2019). Identification and characterization of multifunctional cationic peptides from traditional Japanese fermented soybean natto extracts. Journal of Bioscience and Bioengineering, 127(4):472-478.
Tonolo, F., Moretto, L., Folda, A., Scalcon, V., Bindoli, A., Bellamio, M., Feller, E., & Rigobello, M. P. (2019). Antioxidant properties of fermented soy during shelf life. Plant Foods for Human Nutrition, 74(3):287-292.
Tonolo, F., Sandre, M., Ferro, S., Folda, A., Scalcon, V., Scutari, G., Feller, E., Marin, O., Bindoli, A., & Rigobello, M. P. (2018). Milk-derived bioactive peptides protect against oxidative stress in a caco-2 cell model. Food & Function, 9(2):1245-1253.
Trapsilo, P. A. E., Hariati, A. M., & Sulistiati,T. D. (2020). The difference in Lactobacillus plantarum density on the fermentation process of cassava leaves (Manihotutillisima) as substance for plant-based protein. Jurnal Ilmiah Perikanan dan Kelautan, 12(2):324-329.
Ulug, S. K., Jahandideh, F., & Wu, J. (2021). Novel technologies for the production of bioactive peptides. Trends in Food Science and Technology, 108(2):27-39.
Walther, B., & Sieber, R. (2011). Bioactive proteins and peptides in foods. International Journal for Vitamin and Nutrition Research, 81(2-3):181-192.
Watanabe, N., Endo, Y., Fujimoto, K., & Aoki, H. (2006). Tempeh-like fermented soybean (GABA-Tempeh) has an effective influence on lipid metabolism in rats. Journal of Oleo Science, 55(8):391-396.
Wenno, M. R., Suprayitno, E., Aulanniam, A., & Hardoko, H. (2016). The physicochemical characteristics and angiotensin converting enzyme (ACE) inhibitory activity of skipjack tuna (Katsuwonus pelamis) “bakasang”. Jurnal Teknologi, 78(4-2):1-7.
Wikandari, R. P., & Yuanita, L. (2016). The effect of degradation of proteolitic enzyme on angiotensin converting enzyme inhibitor activity of bekasam with Lactobacillus plantarum B1765. Agritech, 36(2):170-175.
Wikandari, P. R., Suparmo, Marsono, Y., & Rahayu, E. (2011). The potency of milkfish (Chanos chanos) bekasam as source of angiotensin I converting enzyme inhibitor. Journal of Biota, 16(1):145-152.
Wirawati, C. U. (2018). Characteristic and development of cow’s milk dadih as an alternate of buffalo’s milk dadih. Indonesian Bulletin of Animal and Veterinary Sciences, 27(2):95-103.
Yan, J., Zhao, J., Yang, R., & Zhao, W. (2019). Bioactive peptides with antidiabetic properties: A review. International Journal of Food Science and Technology, 54(6):1909-1919.
Yang, Q., Cai, X., Yan, A., Tian, Y., Du, M., & Wang, S. (2020). A specific antioxidant peptide: Its properties in controlling oxidation and possible action mechanism. Food Chemistry, 327(26):1-9.
Yu, D., Feng, M., Sun, J., Xu, X., & Zhou, G. (2020). Protein degradation and peptide formation with antioxidant activity in pork protein extracts inoculated with Lactobacillus plantarum and Staphylococcus simulans. Meat Science, 160(2):1-8.
Yusuf, M., Nur Fitriani, U. A., Syahriati, Saleh, R., Tasir, & Syamsuar. (2022). Dangke: Local indigenous cheese from Enrekang, South Sulawesi Indonesia. IOP Conference Series: Earth and Environmental Science, 1097(1):1-8.
Zakariah, M. A., Malaka, R., Laga, A., Ako, A., Zakariah, M., & Mauliah, F. U. (2022). Quality and storage time of traditional dangke cheese inoculated with indigenous lactic acid bacteria isolated from Enrekang District, South Sulawesi, Indonesia. Biodiversitas, 23(6):3270-3276.
Zaky, A. A., Gandara, J. S., Eun, J. B., Shim, J. H., & Abd El-Aty, A. M. (2022). Bioactivities, applications, safety, and health benefits of bioactive peptides from food and by-products: A review. Frontiers in Nutrition, 8(1):1-18.
Zambrowicz, A., Eckert, E., Pokora, M., Bobak, Ł., Dąbrowska, A., Szołtysik, M., Trziszka, T., & Chrzanowska, J. (2015). Antioxidant and antidiabetic activities of peptides isolated from a hydrolysate of an egg-yolk protein by-product prepared with a proteinase from Asian pumpkin (Cucurbita ficifolia). RSC Advances, 5(14):10460-10467.
Zannou, O., Agossou, D. J., Miassi, Y., Agani, O. B., Aisso, M. D., Chabi, I. B., Kpoclou, Y. E, Azokpota, P., & Koca, I. (2022). Traditional fermented foods and beverages: Indigenous practices of food processing in Benin Republic. International Journal of Gastronomy and Food Science, 27(1):1-15.
Zhang, J. B., Zhao, Y. Q., Wang, Y. M., Chi, C. F., & Wang, B., (2019). Eight collagen peptides from hydrolysate fraction of Spanish mackerel skins: Isolation, identification, and in vitro antioxidant activity evaluation. Marine Drugs, 17(4):1-13.
Zhang, L., Li, Z., Ye, X., Chen, Z., & Chen, Z. S. (2021). Mechanisms of thrombosis and research progress on targeted antithrombotic drugs. Drug Discovery Today, 26(10):2282-2302.
Zhao, S., Han, J., Bie, X., Lu, Z., Zhang, C., & Lv, F. (2016). Purification and characterization of plantaricin JLA-9: A novel bacteriocin against Bacillus spp. produced by Lactobacillus plantarum JLA-9 from Suan-Tsai, a traditional Chinese fermented cabbage. Journal of Agricultural and Food Chemistry, 64(13):2754-2764.
Zou, T. B., He, T. P., Li, H. B., Tang, H. W., & Xia, E. Q. (2016). The structure-activity relationship of the antioxidant peptides from natural proteins. Molecules, 21(1):1-14.