Date Log
Copyright (c) 2022 Jurnal Ilmiah Perikanan dan Kelautan
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
1. Copyright of the article is transferred to the journal, by the knowledge of the author, whilst the moral right of the publication belongs to the author.
2. The legal formal aspect of journal publication accessibility refers to Creative Commons Atribusi-Non Commercial-Share alike (CC BY-NC-SA), (https://creativecommons.org/licenses/by-nc-sa/4.0/)
3. The articles published in the journal are open access and can be used for non-commercial purposes. Other than the aims mentioned above, the editorial board is not responsible for copyright violation
The manuscript authentic and copyright statement submission can be downloaded ON THIS FORM.
Effect of Homogenization Process on the Production of Arthrospira platensis Carotenoid Nanocapsules Encapsulated with Arabic Gum and Whey Protein Concentrate
Corresponding Author(s) : Siti Ari Budhiyanti
Jurnal Ilmiah Perikanan dan Kelautan, Vol. 14 No. 1 (2022): JURNAL ILMIAH PERIKANAN DAN KELAUTAN
Abstract
Highlight Research
- The homogenization process affected the particle size reduction
- The homogenization process using both High Speed Homogenizer and Ultrasound had a smaller particle size and the highest efficiency in encapsulation
Abstract
Arthrospira platensis contains a high concentration of carotenoids mainly 80 % β-carotene. The use of β-carotene in functional food and nutritional supplements was constrained by its lack of chemical and physical stability. Therefore, efforts were needed to protect carotenoids from damage by using an encapsulation system. The emulsion preparation before the encapsulation process had an influence on the stability of the oil-in-water emulsion. Various methods were used to prepare emulsions, such as high shear homogenizers (HSH) and ultrasound (US) treatment. The homogenization step was critical because it influenced the chemical stability of any encapsulated compounds. The purpose of this work was to generate nanocapsules of β-carotene with minimum carotenoid degradation, high efficiency of encapsulation, and small particle size, with variation in the homogenization process. This study consisted of 5 treatments, including the homogenization processes used HSH 24.000 rpm for 90 s ; HSH 24.000 rpm for 60 s, amplitude 55 % for 120 s ; amplitude 94 % for 138 s ; amplitude 55 % for 138 s ; and amplitude 55 % for 120 s . Each parameter was analysed by ANOVA followed by Tukey pairwise comparisons with 95% confidence level and p<0.05. The particle size was influenced by the emulsification process, such as homogenization treatment, homogenization time, amplitude, and time of sonication. The sample that was homogenized using both HSH and US had a smaller particle size and the highest efficiency in encapsulation than others. The combination of homogenization process could decrease particle size.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Alcí¢ntara, M. A., de Lima, A. E. A., Braga, A. L. M., Tonon, R. V., Galdeno, M. C., Mattos, M. D. C., Brígida, A. I. S., Rosenhaim, R., dos Santos, N. A., & Cordeiro, A. M. T. M. (2019). Influence of the emulsion homogenization method on the stability of chia oil microencapsulated by spray drying. Powder Technology, 354:877-885.
- Alfionita, K, Budhiyanti, S. A., & Husni. A. (2017). Pengaruh pengemas dan suhu terhadap stabilitas karotenoid nanokapsul Spirulina platensis dengan enkapsulan gum arab dan WPC selama penyimpanan. Yogyakarta: Universitas Gadjah Mada.
- Bajac, J. D., Nikolovski, B. G., Nesterović, A. G., LonÄarević, I. S., & Petrović, J. S. (2019). Determination of optimal ultrasound conditions for preparation of O/W emulsions with encapsulated juniper berry essential oil (Juniperus communis L.). Acta Perodica Technologica, 2019(50):23-32.
- Behbahani, E. S., Ghaedi, M., Abbaspour, M., & Rostamizadeh, K. (2017). Optimization and characterization of ultrasound assisted preparation of curcumin-loaded solid lipid nanoparticles: Application of central composite design, thermal analysis and X-ray diffraction techniques. Ultrasonics Sonochemistry, 28:271-280.
- Belay. A. (2007). Spirulina (Arthrospira): Production and quality assurance (1st ed.). In Spirulina in Human Nutrition and Health. USA: CRC Press.
- Carneiro, H. C.F., Tonon, R.V., Grosso, C. R. F., & Hubinger, M. D. (2013). Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different wall materials. Journal of Food Engineering, 115(4):443-451.
- Chen, H., & Zhong, Q. (2015). A Novel method of preparing stable zein nanoparticle dispersions for encapsulation of peppermint oil. Food Hydrocolloids, 43:593-602.
- Chemat, F., Zill-e-Huma, & Khan, M. K. (2011). Application of ultrasound in food technology: Processing, preservation, and extraction. Ultrasonics Sonochemistry, 18(4):813-835.
- Cho, Y. H., Kim, S., Bae, E. K., Mok, C. K., & Park, J. (2008). Formulation of a cosurfactant-free O/W microemulsion using nonionic surfactant mixtures. Food Engineering and Physical Properties, 73(3):115-121.
- Crouter, A., & Briens, L. (2014). The effect of moisture on the flowability of pharmaceutical excipients. American Association of Pharmaceutical Scientists, 15(1):65-74.
- Desorby, S. A., Netto, F. M., & Labuza, T. P. (1997). Comparison of spray drying, drum drying, and freeze drying for β-carotene encapsulation and preservation. Journal of Food Science, 62(6):1158-1162.
- Dias, M. I., Ferreira, I. C. F. R., & Barreiro, M. F. (2015). Microencapsulation of bioactives for food applications. Food and Function, 6(4):1035-1052.
- Fang, X., Shima, M., & Adachi, S. (2005). Effects of drying conditions on the oxidation of linoleic Acid encapsulated with gum arabic by spray drying. Food Science and Technology Research, 11(4):380-384.
- Ferreira, C. D., & Nunes, I. L. (2019). Oil nanoencapsulation: Development, application, and incorporation into the food market. Nanoscale Research Letters, 14(9):1-13.
- Gaikwad, S. G., & Pandit, A. B. (2008). Ultrasound emulsification: Effect of ultrasonic and physicochemical properties on dispersed phase volume and droplet size. Ultrasonics Sonochemistry 15(4):554-563.
- Gaumet, M., Vargas, A., Gurny, R., & Delie, F. (2008). Nanoparticles for drug delivery: The need for precision in reporting particle size parameters. European Journal of Pharmaceutical and Biopharmaceutics, 69(1):1-9.
- Ghosh, S., & Rousseau, D. (2011). Fat crystals and water-in-oil emulsion stability. Current Opinion in Colloid & Interface Science, 16(5):421-431.
- Given, P. S. (2009). Encapsulation of flavors in emulsions for beverages. Current Opinion in Colloid & Interface Science, 14(1):43-47.
- Hakansson A. & Rayner, M. (2018). Nanoemulsions: Formulation, applications, characterization. In General principles of nanoemulsion formation by high-energy mechanical methods. Netherland: Elsevier Science
- Hashtjin, A. M., & Abbasi, S. (2015). Optimization of ultrasonic emulsification conditions for the production of orange peel essential oil nanoemulsions. Journal Food Science and Technology, 52(5):2679-2689.
- Hidayat, R., Budhiyanti, S. A., & Husni, A. (2016). Pengaruh suhu spray drying terhadap karakteristik nanokapsul karotenoid dari Spirulina platensis dengan enkapsulan gum arab dan konsentrat protein whey. Yogyakarta: Universitas Gadjah Mada.
- Higuera-Barraza, O. A., Torres-Arreola, W., Ezquerra-Brauer, J. M. Cinco-Moroyoqui, F. J., Figueroa, J. C. R., & Marquez-Ríos, E. (2017). Effect of pulsed ultrasound on the physicochemical characteristics and emulsifying properties of squid (Dosidicus gigas) mantle protein. Ultrasonics Sonochemistry 38:829-834.
- Hussathirak, K., Suwakul, W., & Charnvanich, D. (2019). The effect of process parameters on physical characteristics of nanostructured lipid carriers using ultrasonication method. Paper presented at the 35th International Annual Meeting in Pharmaceutical Sciences & CU-MPU International Collaborative Research Conference, Bangkok, Thailand.
- Jafari, S. M., He, Y., & Bhandari, B. (2006). Nano-emulsion production by sonication and microfluidization-A comparison. International Journal of Food Properties, 9(3):475-485.
- Kasperczyk, S., Dobrakowski, M., Kasperczyk, J., Ostalowska, A., Zalejska-Fiolka, J., & Birkner, E. (2014). Beta-carotene reduces oxidative stress, improves glutathione metabolism and modifies antioxidant defense systems in lead-exposed workers. Toxicology and Applied Pharmacology, 280(1):36-41.
- Kerkhofs, S., Lipkens, H., Velghe, F., Verlooy, P., & Martens, J. A. (2011). Mayonnaise production in batch and continuous process exploiting magnetohydrodynamic force. Journal of Food Engineering, 106(1):35-39.
- Krishnan, S., Bhosale, R., & Singhal, R. S. (2005). Microencapsulation of cardamom oleoresin: Evaluation of blends of gum arabic, maltodextrin and a modified starch as wall materials. Carbohydrate Polymers, 61(1):95-102.
- Kumalasari, A. R., & Budhiyanti, S. A. (2015). Pengaruh konsentrasi karotenoid dari Spirulina platensis terhadap karakteristik nanokapsul dengan enkapsulan konsentrat protein whey dan gum arab. Yogyakarta: Universitas Gadjah Mada.
- Létang, C., Piau, M., Verdier, C., & Lefebure, L. (2001). Characterization of wheat-flour-water doughs: A new method using ultrasound. Ultrasonics, 39(2):133-141.
- Li, C., Li, X., Li, S., Weng, Y., Wang, K., Zhang, T., Chen, S., Lu, X., Jiang, Y., Xu, J., & Liang, X. (2016). Development and validation of a method for determination of encapsulation efficiency of CPT-11/DSPE mPEG 2000 nanoparticles. Medicinal Chemistry, 6(5):345-348.
- Li, P. H., & Chiang, B. H. (2012). Process optimization and stability of D-limonene-in-water nanoemulsions prepared by ultrasonic emulsification using response surface methodology. Ultrasonic Sonochemistry, 19(1):192-197.
- Liang, R., Shoemaker, C. F., Yang, X., Zhong, F., & Huang, Q. (2013). Stability and bioaccessibility of íŸ-carotene in nanoemulsions stabilized by modified starches. Journal of Agricultural and Food Chemistry, 61(6):1249-1257.
- Lima, F. F., Lescano, C. H., Oliveira, E. F. R., Fakhouri, F. M., Moraes, I. C. F., Kassuya, C. A. L., & Sanjinez-Argandona, E. J. (2019). Characterization and optimization of oil microcapsules from Attalea phalerata mart. For the preservation of bioactive compounds. Brazilian Journal of Pharmaceutical Sciences, 55:1-9.
- Maher, P. G., Roos, Y. H., & Fenelon, M. A. (2014). Physicochemical properties of spray dried nanoemulsions with varying final water and sugar contents. Journal of Food Engineering, 126:113-119.
- Mani, V., Iyer, M., Dhruy, A., Mani, U., & Sharma S. (2008). Therapeutic Utility Spirulina. In M. E. Gershwin and A. Belay (Ed.), Spirulina human nutrition and health. (pp. 71-100). Boca Raton: CRC Press.
- Mao, L., Yang, J., Xu, D., Yuan, F., & Gao, Y. (2010). Effects of homogenization models and emulsifiers on the physicochemical properties of ï¢-carotene nanoemulsions. Journal of Dispersion Science and Technology, 31(7):986-993.
- Maphosa, Y., Jideani, V. A., & Adeyi, O. (2017). Effect of soluble dietary fibres from bambara groundnut varieties on the stability of orange oil beverage emulsion. African Journal of Science, Technology, Innovation and Development, 9(1):69-76.
- McClements, D. J., & Decker, E. A. (2000). Lipid oxidation in oil-in-water emulsions: Impact of molecular environment on chemical reactions in heterogeneous food systems. Journal of Food Science, 65(8):1270-1282.
- McClements, D. J., & Rao, J. (2011). Food-grade nanoemulsions: Formulation, fabrication, properties, performance, biological fate, and potential toxicity. Critical Reviews in Foods and Nutrition, 51(4):285-330.
- McClements, D. J. (2004). Protein-stabilized emulsions. Current Opinion in Colloid & Interface Science, 9(5):305-313.
- McClements, D. J. (2005). Food emulsions principles, practices and techniques (2nd ed.). Boca Raton: CRC Press.
- Meybodi, N. M., Mohammadifar, M. A., & Naseri, A. R. (2014). Effective factors on the stability of oil-in-water emulsion based beverage: A review. Journal of Food Quality and Hazards Control, 1(3): 67-71.
- Mohammed, N. K., Tan, C. P., Manap, Y. A., Muhialdin, B. J., & Hussin, A. S. (2020). Spray drying for the encapsulation oils-A review. Molecules, 25(17):3873.
- Mohanraj, V. J., & Chen, Y. (2006). Nanoparticles-A review. Tropical Journal of Pharmaceutical Research, 5(1):561–573.
- Mosquera, L. H., Moraga, G., & Martinez-Navarrete, N. (2012). Critical water activity and critical water content of freeze dried strawberry powder as affected by maltodextrin and arabic gum. Food Research International, 47(2):201-206.
- O'sullivan, A. M. N. (2013). Cellular and in-vitro models to assess antioxidant activities of seaweed extracts and the potential use of the extracts as ingredients. National University of Ireland. Philosophy in Food and Nutritional Sciences. PhD Thesis. Ireland: University College Cork.
- Pahlevi, Y. W., Estiasih, T., & Saparianti, E. (2008). Mikroenkapsulasi ekstrak karotenoid dari spora kapang oncom merah (Neurospora sp.) dengan bahan penyalut berbasis protein menggunakan metode pengeringan semprot. Jurnal Teknologi Pertanian, 9(1):31-39.
- Peshkovsky, A. S., & Bystryak, S. (2014). Continuous-flow production of a pharmaceutical nanoemulsion by high-amplitude ultrasound: Process scale-up. Chemical Engineering and Processing, 82:132-136.
- Prata, A. S., Garcia, L., Tonon, R. V., & Hubinger, M. D. (2013). Wall material selection for encapsulation by spray drying. Journal of Colloid Science and Biotechnology, 2(2):1-7.
- Qian, C., Decker, E. A., Xiao, H., & McClements, D. J. (2012). Physical and chemical stability of ï¢-carotene-enriched nanoemulsions: Influence of pH, ionic strength, temperature, and emulsifier type. Food Chemistry, 132(3):1221-1229.
- Reineccius, G. A. (2004). Multiple-core encapsulation: the spray drying of food ingredients. In Vilstrup, P. (Ed.), Microencapsulation of food ingredients. (pp. 151-185). United Kingdom: Leatherhead International Limited.
- Ricaurte, L., Perea-Flores, M. J., Martinez, A., & Quintanilla-Carvajal, M. X. (2016). Production on high-oleic palm oil nanoemulsions by high-shear homogenization (microfluidization). Innovative Food Science Emerging Technologies, 35:75-85.
- Rodríguez, J., Martín, M. J., Ruiz, M. A., & Clares, B. (2016). Current encapsulation strategies for bioactive oils: From alimentary to pharmaceutical perspectives. Food Research International, 83:41-59.
- Rosanita, E. N. (2014). Mikroenkapsulasi β-karotenoid S. platensis dengan enkapsulan maltodekstrin dan konsentrat protein whey. Thesis. Yogyakarta: Universitas Gajah Mada.
- Salvia, T. L., Qian, C., Martin-Belloso, O., & McClements, D. J. (2013a). Influence of particle size on lipid digestion and ï¢-carotene bioaccessibility in emulsions and nanoemulsions. Food Chemistry, 141(2):1472-1480.
- Salvia, T. L., Qian, C., Martin-Belloso, O., & McClements, D. J. (2013b). Modulating ï¢-carotene bioaccessibility by controlling oil composition and concentration in edible nanoemulsions. Food Chemistry, 139(1-4):878-884.
- Sanguansri, P., & Augustin, M. A. (2006). Nanoscale materials development-A food industry perspective. Trends Food Science Technology, 17(10):547-556.
- Sherman, P. (1995). A critique of some methods proposed for evaluating the emulsifying capacity and emulsion stabilizing performance of vegetable proteins. Italian Journal of Food Science, 12(1):3-10.
- Soottitantawat, A., Bigeardb, F., Yoshiia, H., Furutaa, T., Ohkawarac, M., & Linkod, P. (2005). Microencapsulation of l-menthol by spray drying and its release characteristics. Innovative Food Science & Emerging Technologies, 6(2):163-170.
- Sotiroudis, T. G., & Sotiroudis, G. T. (2013). Health aspects of Spirulina (Arthrospira) microalga food supplement. Journal of the Serbian Chemical Society, 78(3):395-405.
- Tadros, T. F. (2004). Application of rheology for assessment and prediction of the long-term physical stability of emulsions. Advances in Colloid and Interface Science, 108-109:227-258.
- Tadros, T. F. (2013). Emulsion formation, stability, and rheology (3rd ed.). Germany: Wiley-VCH Verlag GmbH & Compony KGaA.
- Tan, C. P., & Nakajima, M. (2005). ï¢-carotene nanodispersions: Preparation, characterization and stability evaluation. Food Chemistry, 92(4):661-671.
- Tanaka, T., Shnimizu, M., & Moriwaki, H. (2012). Cancer chemoprevention by carotenoids. Molecules, 17(3):3202-3242.
- Tomar, M., Kumar, S. A., & Raj, S. A. (2017). Effect of moisture content of excipient (microcrystalline cellulose) on direct compressible solid dosage forms. International Journal of Pharmaceutical Sciences and Research, 8(1):282-288.
- Tontul, I., & Topuz, A. (2013). Mixture design approach in wall material selection and evaluation of ultrasonic emulsification in flaxseed oil microencapsulation. Drying Technology, 31(12):1362-1373.
- Tontul, I., & Topuz, A. (2015). Microencapsulation of plant oil rich in alpha-linolenic acid: Effect of processing parameters. Microencapsulation and Microspheres for Food Applications, 253-269.
- Vahidmoghadam, F., Pourahmad, R., Mortazavi, A., Davoodi, D., & Azizinezhad, R. (2019). Characteristics of freeze-dried nanoencapsulated fish oil with whey protein concentrate and gum Arabic as wall materials. Food Science and Technology, 1-7.
- Vaidya, S., Bhosale, R., & Singhal, R. S. (2006). Microencapsulation of cinnamon oleoresin by spray drying using different wall materials. Drying Technology, 24(8):983-992.
- Wahyu, A. P., & Yanuar, E. K. (2010). Optimasi proses ekstraksi pigmen karotenoid dari Spirulina plantesis. Semarang: Universitas Diponegoro.
- Yi, J., Li, Y., Zhong, F., & Yokoyama, W. (2014). The physicochemical stability and in vitro bioaccesibility of beta-carotene in oil-in-water sodium caseinate emulsions. Food Hydrocolloids, 35:19-27.
- Yuan, Y., Gao, Y., Mao, L., & Zhao, J. (2008). Optimisation of conditions for the preparation of [Beta]-carotene nanoemulsions using response surface methodology. Food Chemistry, 107(3):300-1306.
References
Alcí¢ntara, M. A., de Lima, A. E. A., Braga, A. L. M., Tonon, R. V., Galdeno, M. C., Mattos, M. D. C., Brígida, A. I. S., Rosenhaim, R., dos Santos, N. A., & Cordeiro, A. M. T. M. (2019). Influence of the emulsion homogenization method on the stability of chia oil microencapsulated by spray drying. Powder Technology, 354:877-885.
Alfionita, K, Budhiyanti, S. A., & Husni. A. (2017). Pengaruh pengemas dan suhu terhadap stabilitas karotenoid nanokapsul Spirulina platensis dengan enkapsulan gum arab dan WPC selama penyimpanan. Yogyakarta: Universitas Gadjah Mada.
Bajac, J. D., Nikolovski, B. G., Nesterović, A. G., LonÄarević, I. S., & Petrović, J. S. (2019). Determination of optimal ultrasound conditions for preparation of O/W emulsions with encapsulated juniper berry essential oil (Juniperus communis L.). Acta Perodica Technologica, 2019(50):23-32.
Behbahani, E. S., Ghaedi, M., Abbaspour, M., & Rostamizadeh, K. (2017). Optimization and characterization of ultrasound assisted preparation of curcumin-loaded solid lipid nanoparticles: Application of central composite design, thermal analysis and X-ray diffraction techniques. Ultrasonics Sonochemistry, 28:271-280.
Belay. A. (2007). Spirulina (Arthrospira): Production and quality assurance (1st ed.). In Spirulina in Human Nutrition and Health. USA: CRC Press.
Carneiro, H. C.F., Tonon, R.V., Grosso, C. R. F., & Hubinger, M. D. (2013). Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different wall materials. Journal of Food Engineering, 115(4):443-451.
Chen, H., & Zhong, Q. (2015). A Novel method of preparing stable zein nanoparticle dispersions for encapsulation of peppermint oil. Food Hydrocolloids, 43:593-602.
Chemat, F., Zill-e-Huma, & Khan, M. K. (2011). Application of ultrasound in food technology: Processing, preservation, and extraction. Ultrasonics Sonochemistry, 18(4):813-835.
Cho, Y. H., Kim, S., Bae, E. K., Mok, C. K., & Park, J. (2008). Formulation of a cosurfactant-free O/W microemulsion using nonionic surfactant mixtures. Food Engineering and Physical Properties, 73(3):115-121.
Crouter, A., & Briens, L. (2014). The effect of moisture on the flowability of pharmaceutical excipients. American Association of Pharmaceutical Scientists, 15(1):65-74.
Desorby, S. A., Netto, F. M., & Labuza, T. P. (1997). Comparison of spray drying, drum drying, and freeze drying for β-carotene encapsulation and preservation. Journal of Food Science, 62(6):1158-1162.
Dias, M. I., Ferreira, I. C. F. R., & Barreiro, M. F. (2015). Microencapsulation of bioactives for food applications. Food and Function, 6(4):1035-1052.
Fang, X., Shima, M., & Adachi, S. (2005). Effects of drying conditions on the oxidation of linoleic Acid encapsulated with gum arabic by spray drying. Food Science and Technology Research, 11(4):380-384.
Ferreira, C. D., & Nunes, I. L. (2019). Oil nanoencapsulation: Development, application, and incorporation into the food market. Nanoscale Research Letters, 14(9):1-13.
Gaikwad, S. G., & Pandit, A. B. (2008). Ultrasound emulsification: Effect of ultrasonic and physicochemical properties on dispersed phase volume and droplet size. Ultrasonics Sonochemistry 15(4):554-563.
Gaumet, M., Vargas, A., Gurny, R., & Delie, F. (2008). Nanoparticles for drug delivery: The need for precision in reporting particle size parameters. European Journal of Pharmaceutical and Biopharmaceutics, 69(1):1-9.
Ghosh, S., & Rousseau, D. (2011). Fat crystals and water-in-oil emulsion stability. Current Opinion in Colloid & Interface Science, 16(5):421-431.
Given, P. S. (2009). Encapsulation of flavors in emulsions for beverages. Current Opinion in Colloid & Interface Science, 14(1):43-47.
Hakansson A. & Rayner, M. (2018). Nanoemulsions: Formulation, applications, characterization. In General principles of nanoemulsion formation by high-energy mechanical methods. Netherland: Elsevier Science
Hashtjin, A. M., & Abbasi, S. (2015). Optimization of ultrasonic emulsification conditions for the production of orange peel essential oil nanoemulsions. Journal Food Science and Technology, 52(5):2679-2689.
Hidayat, R., Budhiyanti, S. A., & Husni, A. (2016). Pengaruh suhu spray drying terhadap karakteristik nanokapsul karotenoid dari Spirulina platensis dengan enkapsulan gum arab dan konsentrat protein whey. Yogyakarta: Universitas Gadjah Mada.
Higuera-Barraza, O. A., Torres-Arreola, W., Ezquerra-Brauer, J. M. Cinco-Moroyoqui, F. J., Figueroa, J. C. R., & Marquez-Ríos, E. (2017). Effect of pulsed ultrasound on the physicochemical characteristics and emulsifying properties of squid (Dosidicus gigas) mantle protein. Ultrasonics Sonochemistry 38:829-834.
Hussathirak, K., Suwakul, W., & Charnvanich, D. (2019). The effect of process parameters on physical characteristics of nanostructured lipid carriers using ultrasonication method. Paper presented at the 35th International Annual Meeting in Pharmaceutical Sciences & CU-MPU International Collaborative Research Conference, Bangkok, Thailand.
Jafari, S. M., He, Y., & Bhandari, B. (2006). Nano-emulsion production by sonication and microfluidization-A comparison. International Journal of Food Properties, 9(3):475-485.
Kasperczyk, S., Dobrakowski, M., Kasperczyk, J., Ostalowska, A., Zalejska-Fiolka, J., & Birkner, E. (2014). Beta-carotene reduces oxidative stress, improves glutathione metabolism and modifies antioxidant defense systems in lead-exposed workers. Toxicology and Applied Pharmacology, 280(1):36-41.
Kerkhofs, S., Lipkens, H., Velghe, F., Verlooy, P., & Martens, J. A. (2011). Mayonnaise production in batch and continuous process exploiting magnetohydrodynamic force. Journal of Food Engineering, 106(1):35-39.
Krishnan, S., Bhosale, R., & Singhal, R. S. (2005). Microencapsulation of cardamom oleoresin: Evaluation of blends of gum arabic, maltodextrin and a modified starch as wall materials. Carbohydrate Polymers, 61(1):95-102.
Kumalasari, A. R., & Budhiyanti, S. A. (2015). Pengaruh konsentrasi karotenoid dari Spirulina platensis terhadap karakteristik nanokapsul dengan enkapsulan konsentrat protein whey dan gum arab. Yogyakarta: Universitas Gadjah Mada.
Létang, C., Piau, M., Verdier, C., & Lefebure, L. (2001). Characterization of wheat-flour-water doughs: A new method using ultrasound. Ultrasonics, 39(2):133-141.
Li, C., Li, X., Li, S., Weng, Y., Wang, K., Zhang, T., Chen, S., Lu, X., Jiang, Y., Xu, J., & Liang, X. (2016). Development and validation of a method for determination of encapsulation efficiency of CPT-11/DSPE mPEG 2000 nanoparticles. Medicinal Chemistry, 6(5):345-348.
Li, P. H., & Chiang, B. H. (2012). Process optimization and stability of D-limonene-in-water nanoemulsions prepared by ultrasonic emulsification using response surface methodology. Ultrasonic Sonochemistry, 19(1):192-197.
Liang, R., Shoemaker, C. F., Yang, X., Zhong, F., & Huang, Q. (2013). Stability and bioaccessibility of íŸ-carotene in nanoemulsions stabilized by modified starches. Journal of Agricultural and Food Chemistry, 61(6):1249-1257.
Lima, F. F., Lescano, C. H., Oliveira, E. F. R., Fakhouri, F. M., Moraes, I. C. F., Kassuya, C. A. L., & Sanjinez-Argandona, E. J. (2019). Characterization and optimization of oil microcapsules from Attalea phalerata mart. For the preservation of bioactive compounds. Brazilian Journal of Pharmaceutical Sciences, 55:1-9.
Maher, P. G., Roos, Y. H., & Fenelon, M. A. (2014). Physicochemical properties of spray dried nanoemulsions with varying final water and sugar contents. Journal of Food Engineering, 126:113-119.
Mani, V., Iyer, M., Dhruy, A., Mani, U., & Sharma S. (2008). Therapeutic Utility Spirulina. In M. E. Gershwin and A. Belay (Ed.), Spirulina human nutrition and health. (pp. 71-100). Boca Raton: CRC Press.
Mao, L., Yang, J., Xu, D., Yuan, F., & Gao, Y. (2010). Effects of homogenization models and emulsifiers on the physicochemical properties of ï¢-carotene nanoemulsions. Journal of Dispersion Science and Technology, 31(7):986-993.
Maphosa, Y., Jideani, V. A., & Adeyi, O. (2017). Effect of soluble dietary fibres from bambara groundnut varieties on the stability of orange oil beverage emulsion. African Journal of Science, Technology, Innovation and Development, 9(1):69-76.
McClements, D. J., & Decker, E. A. (2000). Lipid oxidation in oil-in-water emulsions: Impact of molecular environment on chemical reactions in heterogeneous food systems. Journal of Food Science, 65(8):1270-1282.
McClements, D. J., & Rao, J. (2011). Food-grade nanoemulsions: Formulation, fabrication, properties, performance, biological fate, and potential toxicity. Critical Reviews in Foods and Nutrition, 51(4):285-330.
McClements, D. J. (2004). Protein-stabilized emulsions. Current Opinion in Colloid & Interface Science, 9(5):305-313.
McClements, D. J. (2005). Food emulsions principles, practices and techniques (2nd ed.). Boca Raton: CRC Press.
Meybodi, N. M., Mohammadifar, M. A., & Naseri, A. R. (2014). Effective factors on the stability of oil-in-water emulsion based beverage: A review. Journal of Food Quality and Hazards Control, 1(3): 67-71.
Mohammed, N. K., Tan, C. P., Manap, Y. A., Muhialdin, B. J., & Hussin, A. S. (2020). Spray drying for the encapsulation oils-A review. Molecules, 25(17):3873.
Mohanraj, V. J., & Chen, Y. (2006). Nanoparticles-A review. Tropical Journal of Pharmaceutical Research, 5(1):561–573.
Mosquera, L. H., Moraga, G., & Martinez-Navarrete, N. (2012). Critical water activity and critical water content of freeze dried strawberry powder as affected by maltodextrin and arabic gum. Food Research International, 47(2):201-206.
O'sullivan, A. M. N. (2013). Cellular and in-vitro models to assess antioxidant activities of seaweed extracts and the potential use of the extracts as ingredients. National University of Ireland. Philosophy in Food and Nutritional Sciences. PhD Thesis. Ireland: University College Cork.
Pahlevi, Y. W., Estiasih, T., & Saparianti, E. (2008). Mikroenkapsulasi ekstrak karotenoid dari spora kapang oncom merah (Neurospora sp.) dengan bahan penyalut berbasis protein menggunakan metode pengeringan semprot. Jurnal Teknologi Pertanian, 9(1):31-39.
Peshkovsky, A. S., & Bystryak, S. (2014). Continuous-flow production of a pharmaceutical nanoemulsion by high-amplitude ultrasound: Process scale-up. Chemical Engineering and Processing, 82:132-136.
Prata, A. S., Garcia, L., Tonon, R. V., & Hubinger, M. D. (2013). Wall material selection for encapsulation by spray drying. Journal of Colloid Science and Biotechnology, 2(2):1-7.
Qian, C., Decker, E. A., Xiao, H., & McClements, D. J. (2012). Physical and chemical stability of ï¢-carotene-enriched nanoemulsions: Influence of pH, ionic strength, temperature, and emulsifier type. Food Chemistry, 132(3):1221-1229.
Reineccius, G. A. (2004). Multiple-core encapsulation: the spray drying of food ingredients. In Vilstrup, P. (Ed.), Microencapsulation of food ingredients. (pp. 151-185). United Kingdom: Leatherhead International Limited.
Ricaurte, L., Perea-Flores, M. J., Martinez, A., & Quintanilla-Carvajal, M. X. (2016). Production on high-oleic palm oil nanoemulsions by high-shear homogenization (microfluidization). Innovative Food Science Emerging Technologies, 35:75-85.
Rodríguez, J., Martín, M. J., Ruiz, M. A., & Clares, B. (2016). Current encapsulation strategies for bioactive oils: From alimentary to pharmaceutical perspectives. Food Research International, 83:41-59.
Rosanita, E. N. (2014). Mikroenkapsulasi β-karotenoid S. platensis dengan enkapsulan maltodekstrin dan konsentrat protein whey. Thesis. Yogyakarta: Universitas Gajah Mada.
Salvia, T. L., Qian, C., Martin-Belloso, O., & McClements, D. J. (2013a). Influence of particle size on lipid digestion and ï¢-carotene bioaccessibility in emulsions and nanoemulsions. Food Chemistry, 141(2):1472-1480.
Salvia, T. L., Qian, C., Martin-Belloso, O., & McClements, D. J. (2013b). Modulating ï¢-carotene bioaccessibility by controlling oil composition and concentration in edible nanoemulsions. Food Chemistry, 139(1-4):878-884.
Sanguansri, P., & Augustin, M. A. (2006). Nanoscale materials development-A food industry perspective. Trends Food Science Technology, 17(10):547-556.
Sherman, P. (1995). A critique of some methods proposed for evaluating the emulsifying capacity and emulsion stabilizing performance of vegetable proteins. Italian Journal of Food Science, 12(1):3-10.
Soottitantawat, A., Bigeardb, F., Yoshiia, H., Furutaa, T., Ohkawarac, M., & Linkod, P. (2005). Microencapsulation of l-menthol by spray drying and its release characteristics. Innovative Food Science & Emerging Technologies, 6(2):163-170.
Sotiroudis, T. G., & Sotiroudis, G. T. (2013). Health aspects of Spirulina (Arthrospira) microalga food supplement. Journal of the Serbian Chemical Society, 78(3):395-405.
Tadros, T. F. (2004). Application of rheology for assessment and prediction of the long-term physical stability of emulsions. Advances in Colloid and Interface Science, 108-109:227-258.
Tadros, T. F. (2013). Emulsion formation, stability, and rheology (3rd ed.). Germany: Wiley-VCH Verlag GmbH & Compony KGaA.
Tan, C. P., & Nakajima, M. (2005). ï¢-carotene nanodispersions: Preparation, characterization and stability evaluation. Food Chemistry, 92(4):661-671.
Tanaka, T., Shnimizu, M., & Moriwaki, H. (2012). Cancer chemoprevention by carotenoids. Molecules, 17(3):3202-3242.
Tomar, M., Kumar, S. A., & Raj, S. A. (2017). Effect of moisture content of excipient (microcrystalline cellulose) on direct compressible solid dosage forms. International Journal of Pharmaceutical Sciences and Research, 8(1):282-288.
Tontul, I., & Topuz, A. (2013). Mixture design approach in wall material selection and evaluation of ultrasonic emulsification in flaxseed oil microencapsulation. Drying Technology, 31(12):1362-1373.
Tontul, I., & Topuz, A. (2015). Microencapsulation of plant oil rich in alpha-linolenic acid: Effect of processing parameters. Microencapsulation and Microspheres for Food Applications, 253-269.
Vahidmoghadam, F., Pourahmad, R., Mortazavi, A., Davoodi, D., & Azizinezhad, R. (2019). Characteristics of freeze-dried nanoencapsulated fish oil with whey protein concentrate and gum Arabic as wall materials. Food Science and Technology, 1-7.
Vaidya, S., Bhosale, R., & Singhal, R. S. (2006). Microencapsulation of cinnamon oleoresin by spray drying using different wall materials. Drying Technology, 24(8):983-992.
Wahyu, A. P., & Yanuar, E. K. (2010). Optimasi proses ekstraksi pigmen karotenoid dari Spirulina plantesis. Semarang: Universitas Diponegoro.
Yi, J., Li, Y., Zhong, F., & Yokoyama, W. (2014). The physicochemical stability and in vitro bioaccesibility of beta-carotene in oil-in-water sodium caseinate emulsions. Food Hydrocolloids, 35:19-27.
Yuan, Y., Gao, Y., Mao, L., & Zhao, J. (2008). Optimisation of conditions for the preparation of [Beta]-carotene nanoemulsions using response surface methodology. Food Chemistry, 107(3):300-1306.