Date Log
Copyright (c) 2023 Jurnal Ilmiah Perikanan dan Kelautan
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
1. Copyright of the article is transferred to the journal, by the knowledge of the author, whilst the moral right of the publication belongs to the author.
2. The legal formal aspect of journal publication accessibility refers to Creative Commons Atribusi-Non Commercial-Share alike (CC BY-NC-SA), (https://creativecommons.org/licenses/by-nc-sa/4.0/)
3. The articles published in the journal are open access and can be used for non-commercial purposes. Other than the aims mentioned above, the editorial board is not responsible for copyright violation
The manuscript authentic and copyright statement submission can be downloaded ON THIS FORM.
Oxygenase Enzyme Activity and Compound Profile in Hydrocarbon Bioremediation by Pseudomonas aeruginosa and Rhodococcus erythropolis Consortium
Corresponding Author(s) : Andi Kurniawan
Jurnal Ilmiah Perikanan dan Kelautan, Vol. 16 No. 1 (2024): JURNAL ILMIAH PERIKANAN DAN KELAUTAN
Abstract
Abstract
Hydrocarbon contamination is one of the most significant environmental problems, including in the marine environment. Several methods, such as chemical and physical remediation, have been constructed to remediate pollutants but remain side effects and have a relatively high cost. Bioremediation is an alternative method for degrading contaminants due to its eco-friendliness and low cost. During bioremediation, the enzyme oxygenase is produced by bacteria to degrade pollutants. However, the oxygenation enzyme's activity and compound profile during this bioremediation process are still sparsely explored. This study aimed to analyze oxygenation enzyme activity and compound profiles during the hydrocarbon bioremediation process by bacterial consortia of Pseudomonas aeruginosa and Rhodococcus erythopolis. The materials of this research were the oxygenase enzyme activity, compound profile, and amount of BOD and COD during the bioremediation process. The results showed that the monooxygenase enzyme has activity between 0.257 and 3.859 U/mL. Meanwhile, the dioxygenase enzyme has activity between 0.579 and 5.402 U/mL. The final incubation compound profile found that Hexadecanoic acid methyl ester (C17H34O2) decreased by up to 47.66%. Moreover, BOD and COD reductions were 68.59% and 67.51%, respectively. This study concluded that oxygenation enzymes were produced to degrade pollutant compounds during the hydrocarbon bioremediation process. Further research is needed to improve the effectiveness of bioremediation by enhancing enzyme activity.
Highlight Research
- The potential of hydrocarbon-degrading bacteria (Rhodococcus erythropolisand Pseudomonas aeruginosa) for pollutant degradation in the marine environment.
- Enzyme activity of hydrocarbon-degrading bacteria and degradation profile of pollutants.
- The dynamics of BOD and COD during the bioremediation process.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Abdel-Shafy, H. I., & Mansour, M. S. M. (2016). A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum, 25(1):107-123.
- Adipah, S. (2018). Introduction of petroleum hydrocarbons contaminants and its human effects. Journal of Environmental Science and Public Health, 03(01):1-9.
- Allison, S. D., Lu, L., Kent, A. G., & Martiny, A. C. (2014). Extracellular enzyme production and cheating in Pseudomonas fluorescens depend on diffusion rates. Frontiers in Microbiology, 5:1-8.
- Amin, A. A., Wahyuni, A. R. T., Ekawati, A. W., & Kurniawan, A. (2022). Analysis of polycyclic aromatic hydrocarbons (PAHs) bioremediation by hydrocarbonoclastic degrading bacteria (Gordonia terrae). IOP Conference Series: Earth and Environmental Science, 1036(1).
- Asemoloye, M. D., Tosi, S., Daccò, C., Wang, X., Xu, S., Marchisio, M. A., Gao, W., Jonathan, S. G., & Pecoraro, L. (2020). Hydrocarbon degradation and enzyme activities of Aspergillus oryzae and Mucor irregularis isolated from Nigerian crude oil-polluted sites. Microorganisms, 8(12):1-19.
- Azubuike, C. C., Chikere, C. B., & Okpokwasili, G. C. (2016). Bioremediation techniques–classification based on site of application: Principles, advantages, limitations and prospects. World Journal of Microbiology and Biotechnology, 32(180):1-18.
- Bacosa, H. P., Ancla, S. M. B., Arcadio, C. G. L. A., Dalogdog, J. R. A., Ellos, D. M. C., Hayag, H. D. A., Jarabe, J. G. P., Karim, A. J. T., Navarro, C. K. P., Palma, M. P. I., Romarate, R. A., Similatan, K. M., Tangkion, J. A. B., Yurong, S. N. A., Mabuhay-Omar, J. A., Inoue, C., & Adhikari, P. L. (2022). From surface water to the deep sea: A review on factors affecting the biodegradation of spilled oil in marine environment. Journal of Marine Science and Engineering, 10(3):426.
- Berhanu, A., Mutanda, I., Taolin, J., Qaria, M. A., Yang, B., & Zhu, D. (2023). A review of microbial degradation of per- and polyfluoroalkyl substances (PFAS): Biotransformation routes and enzymes. Science of the Total Environment, 859(1).
- Brattoli, M., Cisternino, E., Rosario Dambruoso, P., de Gennaro, G., Giungato, P., Mazzone, A., Palmisani, J., & Tutino, M. (2013). Gas chromatography analysis with olfactometric detection (GC-O) as a useful methodology for chemical characterization of odorous compounds. Sensors, 13(12):16759-16800.
- Brimberry, M., Garcia, A. A., Liu, J., Tian, J., & Bridwell-Rabb, J. (2023). Engineering Rieske oxygenase activity one piece at a time. Current Opinion in Chemical Biology, 72:102227.
- Chachina, S. B., Voronkova, N. A., & Baklanova, O. N. (2016). Biological remediation of the petroleum and diesel contaminated soil with earthworms Eisenia fetida. Procedia Engineering, 152:122-133.
- Chen, F., Li, X., Zhu, Q., Ma, J., Hou, H., & Zhang, S. (2019). Bioremediation of petroleum-contaminated soil enhanced by aged refuse. Chemosphere, 222:98-105.
- Chettri, B., Akoijam, C., & Singh, A. K. (2022). Dynamics and prevalence of specific hydrocarbonoclastic bacterial population with respect to nutrient treatment levels in crude oil sludge. Archives of Microbiology, 204(12):1-14.
- Das, N., & Chandran, P. (2011). Microbial degradation of petroleum hydrocarbon contaminants: An overview. Biotechnology Research International, 2011(941810):1-13.
- Dewinta, A. F., Hartono, E. S., Yusni, E., Susetya, I. E., & Siregar, R. F. (2020). The ability of spirulina sp. Microalgae as a phytoremediation agents in liquid waste of handling fish from Cemara Market, Medan. Jurnal Ilmiah Perikanan dan Kelautan, 12(2):286–295.
- Djenar, N. S., & Mulyono, E. W. S. (2017). The kinetics both of growth and metabolite production of X.Campestris using of 4% liquid sugar substrate from cassava hydrolisate. Jurnal Bahan Alam Terbarukan, 6(1):45-49.
- Dos Santos, H. F., Cury, J. C., do Carmo, F. L., Dos Santos, A. L., Tiedje, J., van Elsas, J. D., Rosado, A. S., & Peixoto, R. S. (2011). Mangrove bacterial diversity and the impact of oil contamination revealed by pyrosequencing: Bacterial proxies for oil pollution. PLoS ONE, 6(3):1-8.
- Dwinovantyo, A., Prartono, T., Rahmaniar, R., Prabowo, N. W., & Susanti, S. (2016). Oil spill biodegradation by bacteria isolated from Jakarta Bay marine sediments. ILMU KELAUTAN: Indonesian Journal of Marine Sciences, 21(1):29.
- Dzionek, A., Wojcieszyńska, D., & Guzik, U. (2016). Natural carriers in bioremediation: A review. Electronic Journal of Biotechnology, 23:28-36.
- Emanuele, D. A., Cosentino, F., & Campanella, L. (2017). Use of algae scenedesmus as bioindicators of water pollution from active ingredients. Journal of Analytical & Pharmaceutical Research, 6(5):00189.
- Febriansyah, S. C., Hakim, L., & Retnaningdyah, C. (2022). Evaluation of mangrove water quality in Pancer Cengkrong, Trenggalek and Sine, Tulungagung, East Java, Indonesia using phytoplankton as bioindicators. Jurnal Ilmiah Perikanan dan Kelautan, 14(2):297–312.
- Gao, Y., Cai, M., Shi, K., Sun, R., Liu, S., Li, Q., Wang, X., Hua, W., Qiao, Y., Xue, J., & Xiao, X. (2023). Bioaugmentation enhance the bioremediation of marine crude oil pollution: Microbial communities and metabolic pathways. Water Science and Technology, 87(1):228-238.
- Geetha, S. J., Banat, I. M., & Joshi, S. J. (2018). Biosurfactants: Production and potential applications in microbial enhanced oil recovery (MEOR). Biocatalysis and Agricultural Biotechnology, 14:23-32.
- Huang, B., Zhang, Z., Ding, N., Zhuang, Y., Zhang, G., & Fei, P. (2022). Preparation of acylated chitosan with caffeic acid in non-enzymatic and enzymatic systems: Characterization and application in pork preservation. International Journal of Biological Macromolecules, 194:246-253.
- Jabbar, N. M., Alardhi, S. M., Mohammed, A. K., Salih, I. K., & Albayati, T. M. (2022). Challenges in the implementation of bioremediation processes in petroleum-contaminated soils: A review. Environmental Nanotechnology, Monitoring and Management, 18:100694.
- Juhasz, A. L., Aleer, S., & Adetutu, E. M. (2014). Predicting PAH bioremediation efficacy using bioaccessibility assessment tools: Validation of PAH biodegradation-bioaccessibility correlations. International Biodeterioration and Biodegradation, 95(PB):320-29.
- Kapahi, M., & Sachdeva, S. (2019). Bioremediation options for heavy metal pollution. Journal of Health & Pollution, 9(24):191203.
- Karigar, C. S., & Rao, S. S. (2011). Role of microbial enzymes in the bioremediation of pollutants: A review. Enzyme Research, 2011(805187).
- Katam, K., Maetani, K., Shimizu, T., Nakajima, J., & Bhattacharyya, D. (2018). Study of aerobic biodegradation of surfactants and fluorescent whitening agents in detergents of a few selected Asian countries (India, Indonesia, Japan, and Thailand). Journal of Water and Environment Technology, 16(1):18-29.
- Kaur, A. (2019). Microbial degradation of hydrocarbons in the ecosystem. Microbial Action on Hydrocarbons, 54(3):343-351.
- Kebede, G., Tafese, T., Abda, E. M., Kamaraj, M., & Assefa, F. (2021). Factors influencing the bacterial bioremediation of hydrocarbon contaminants in the soil: Mechanisms and impacts. Journal of Chemistry, 2021(9823362).
- Kielkopf, C. L., Bauer, W., & Urbatsch, I. L. (2020). Bradford assay for determining protein concentration. Cold Spring Harbor Protocols, 2020(4):102269.
- Kriwy, P., & Uthicke, S. (2011). Microbial diversity in marine biofilms along a water quality gradient on the Great Barrier Reef. Systematic and Applied Microbiology, 34(2):116-126.
- Kurniawan, A., Salamah, L. N., Amin, A. A., & Yanuar, A. (2020). Biosorption of Cu(II) by natural biofilm matrix of Lahor Reservoirs, Indonesia. IOP Conference Series: Earth and Environmental Science, 493(1):20-21.
- Kurniawan, A., & Yamamoto, T. (2013). Biofilm Polymer for Biosorption of Pollutant Ions. Procedia Environmental Sciences, 17:179–187.
- Kurniawan, A., & Fukuda, Y. (2023). Analysis of the electric charge properties of biofilm for the development of biofilm matrices as biosorbents for water pollutant. Energy, Ecology and Environment, 8(1):62–68.
- Luo, Q., Liu, L., & Hou, D. (2022). Bioremediation of oily seawater by Bacteria immobilization on a novel carrier material containing nutrients. Journal of Microbiological Methods, 192:106392.
- Sujadi, F. M., Yahya, Y., Kurniawan, A., & Aziz Amin, A. (2020). Lubricant oil bioremediation by Rhodococcus erythropolis bacteria and indigenous bacteria isolated from water contaminated with lubricant oil. Research Journal of Life Science, 7(1):62-74.
- Masithah, E. D., Rahardja, B. S., & Hardianie, T. N. O. K. (2011). Studi perbandingan kemampuan Nannochloropsis sp. dan Spirulina sp. sebagai agen bioremidiasi terhadap logam berat timbal (Pb). Jurnal Ilmiah Perikanan dan Kelautan, 3(2):167–173.
- Mustapha, M. U., & Halimoon, N. (2015). Microorganisms and biosorption of heavy metals in the environment: A review paper. Journal of Microbial & Biochemical Technology, 07(05):253-256.
- Ogbuka, J. C., Nwanmuoh, E. E., Ogbo, A. I., & Achoru, F. E. (2022). Offshore oil spill response base and management of deepwater/offshore oil resources in the Nigerian marine waters: A review. International Journal of Environmental Impacts: Management, Mitigation and Recovery, 5(1):65-81.
- Olukanni, D. O., Agunwamba, J. C., & Ugwu, E. I. (2014). Biosorption of heavy metals in industrial wastewater using micro-organisms (Pseudomonas aeruginosa). American Journal of Scientific and Industrial Research, 5(2):81-87.
- Paglarini, C. de S., Martini, S., & Pollonio, M. A. R. (2019). Using emulsion gels made with sonicated soy protein isolate dispersions to replace fat in frankfurters. LWT, 99:453-459.
- Pi, Y., Chen, B., Bao, M., Fan, F., Cai, Q., Ze, L., & Zhang, B. (2017). Microbial degradation of four crude oil by biosurfactant producing strain Rhodococcus sp. Bioresource Technology, 232:263-269.
- Prenafeta-Boldú, F. X., Vervoort, J., Grotenhuis, J. T. C., & Van Groenestijn, J. W. (2002). Substrate interactions during the biodegradation of benzene, toluene, ethylbenzene, and xylene (BTEX) hydrocarbons by the fungus Cladophialophora sp. strain T1. Applied and Environmental Microbiology, 68(6):2660-2665.
- Rabus, R., Boll, M., Heider, J., Meckenstock, R. U., Buckel, W., Einsle, O., Ermler, U., Golding, B. T., Gunsalus, R. P., Kroneck, P. M. H., Krüger, M., Lueders, T., Martins, B. M., Musat, F., Richnow, H. H., Schink, B., Seifert, J., Szaleniec, M., Treude, T., Ullmann, G. M., Vogt, C., von Bergen, M., & Wilkes, H. (2016). Anaerobic microbial degradation of hydrocarbons: From enzymatic reactions to the environment. Journal of Molecular Microbiology and Biotechnology, 26(1-3):5-28.
- Radwan, S. S., Khanafer, M. M., & Al-Awadhi, H. A. (2019). Ability of the so-called obligate hydrocarbonoclastic bacteria to utilize nonhydrocarbon substrates thus enhancing their activities despite their misleading name. BMC Microbiology, 19(1):1-12.
- Rahman, R. N. Z. R. A., Latip, W., Adlan, N. A., Sabri, S., & Ali, M. S. M. (2022). Bacteria consortia enhanced hydrocarbon degradation of waxy crude oil. Archives of Microbiology, 204(12):1-13.
- Roche, K. R., Drummond, J. D., Boano, F., Packman, A. I., Battin, T. J., & Hunter, W. R. (2017). Benthic biofilm controls on fine particle dynamics in streams. Water Resources Research, 53(1):222-236.
- Shintani, M., Sugiyama, K., Sakurai, T., Yamada, K., & Kimbara, K. (2019). Biodegradation of A-fuel oil in soil samples with bacterial mixtures of Rhodococcus and Gordonia strains under low temperature conditions. Journal of Bioscience and Bioengineering, 127(2):197-200.
- Silva, B., Martins, M., Rosca, M., Rocha, V., Lago, A., Neves, I. C., & Tavares, T. (2020). Waste-based biosorbents as cost-effective alternatives to commercial adsorbents for the retention of fluoxetine from water. Separation and Purification Technology, 235:116139.
- Sirotkin, A. V., & Harrath, A. H. (2017). Influence of oil-related environmental pollutants on female reproduction. Reproductive Toxicology, 71:142-145.
- Syakti, A. D., Lestari, P., Simanora, S., Sari, L. K., Lestari, F., Idris, F., Agustiadi, T., Akhlus, S., Hidayati, N. V., & Riyanti. (2019). Culturable hydrocarbonoclastic marine bacterial isolates from Indonesian seawater in the Lombok Strait and Indian Ocean. Heliyon, 5(5):e01594.
- Tam, N. F. Y., Wong, Y. S., & Wong, M. H. (2009). Novel technology in pollutant removal at source and bioremediation. Ocean and Coastal Management, 52(7):368-373.
- Tamoor, M., Samak, N. A., Jia, Y., Mushtaq, M. U., Sher, H., Bibi, M., & Xing, J. (2021). Potential use of microbial enzymes for the conversion of plastic waste into value-added products: A viable solution. Frontiers in Microbiology, 12:777727.
- Tornero, V., & Hanke, G. (2016). Chemical contaminants entering the marine environment from sea-based sources: A review with a focus on European seas. Marine Pollution Bulletin, 112(1-2):17-38.
- Varjani, S., & Upasani, V. N. (2021). Bioaugmentation of Pseudomonas aeruginosa NCIM 5514 – A novel oily waste degrader for treatment of petroleum hydrocarbons. Bioresource Technology, 319:124240.
- Wang, Q., Zhang, S., Li, Y., & Klassen, W. (2011). Potential approaches to improving biodegradation of hydrocarbons for bioremediation of crude oil pollution. Journal of Environmental Protection, 02(01):47-55.
- Wignyanto, Hidayat, N., & Ariningrum Alfia. (2009). Bioremediasi limbah cair sentra industri tempe sanan. Jurnal Teknologi Pertanian, 10(2):123-136.
- WÅ‚óka, D., Placek, A., Rorat, A., Smol, M., & Kacprzak, M. (2017). The evaluation of polycyclic aromatic hydrocarbons (PAHs) biodegradation kinetics in soil amended with organic fertilizers and bulking agents. Ecotoxicology and Environmental Safety, 145:161-168.
- Wu, M., Li, W., Dick, W. A., Ye, X., Chen, K., Kost, D., & Chen, L. (2017). Bioremediation of hydrocarbon degradation in a petroleum-contaminated soil and microbial population and activity determination. Chemosphere, 169:124-130.
- Yaashikaa, P. R., Senthil Kumar, P., Mohan Babu, V. P., Kanaka Durga, R., Manivasagan, V., Saranya, K., & Saravanan, A. (2019). Modelling on the removal of Cr(VI) ions from aquatic system using mixed biosorbent (Pseudomonas stutzeri and acid treated Banyan tree bark). Journal of Molecular Liquids, 276:362-370.
References
Abdel-Shafy, H. I., & Mansour, M. S. M. (2016). A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum, 25(1):107-123.
Adipah, S. (2018). Introduction of petroleum hydrocarbons contaminants and its human effects. Journal of Environmental Science and Public Health, 03(01):1-9.
Allison, S. D., Lu, L., Kent, A. G., & Martiny, A. C. (2014). Extracellular enzyme production and cheating in Pseudomonas fluorescens depend on diffusion rates. Frontiers in Microbiology, 5:1-8.
Amin, A. A., Wahyuni, A. R. T., Ekawati, A. W., & Kurniawan, A. (2022). Analysis of polycyclic aromatic hydrocarbons (PAHs) bioremediation by hydrocarbonoclastic degrading bacteria (Gordonia terrae). IOP Conference Series: Earth and Environmental Science, 1036(1).
Asemoloye, M. D., Tosi, S., Daccò, C., Wang, X., Xu, S., Marchisio, M. A., Gao, W., Jonathan, S. G., & Pecoraro, L. (2020). Hydrocarbon degradation and enzyme activities of Aspergillus oryzae and Mucor irregularis isolated from Nigerian crude oil-polluted sites. Microorganisms, 8(12):1-19.
Azubuike, C. C., Chikere, C. B., & Okpokwasili, G. C. (2016). Bioremediation techniques–classification based on site of application: Principles, advantages, limitations and prospects. World Journal of Microbiology and Biotechnology, 32(180):1-18.
Bacosa, H. P., Ancla, S. M. B., Arcadio, C. G. L. A., Dalogdog, J. R. A., Ellos, D. M. C., Hayag, H. D. A., Jarabe, J. G. P., Karim, A. J. T., Navarro, C. K. P., Palma, M. P. I., Romarate, R. A., Similatan, K. M., Tangkion, J. A. B., Yurong, S. N. A., Mabuhay-Omar, J. A., Inoue, C., & Adhikari, P. L. (2022). From surface water to the deep sea: A review on factors affecting the biodegradation of spilled oil in marine environment. Journal of Marine Science and Engineering, 10(3):426.
Berhanu, A., Mutanda, I., Taolin, J., Qaria, M. A., Yang, B., & Zhu, D. (2023). A review of microbial degradation of per- and polyfluoroalkyl substances (PFAS): Biotransformation routes and enzymes. Science of the Total Environment, 859(1).
Brattoli, M., Cisternino, E., Rosario Dambruoso, P., de Gennaro, G., Giungato, P., Mazzone, A., Palmisani, J., & Tutino, M. (2013). Gas chromatography analysis with olfactometric detection (GC-O) as a useful methodology for chemical characterization of odorous compounds. Sensors, 13(12):16759-16800.
Brimberry, M., Garcia, A. A., Liu, J., Tian, J., & Bridwell-Rabb, J. (2023). Engineering Rieske oxygenase activity one piece at a time. Current Opinion in Chemical Biology, 72:102227.
Chachina, S. B., Voronkova, N. A., & Baklanova, O. N. (2016). Biological remediation of the petroleum and diesel contaminated soil with earthworms Eisenia fetida. Procedia Engineering, 152:122-133.
Chen, F., Li, X., Zhu, Q., Ma, J., Hou, H., & Zhang, S. (2019). Bioremediation of petroleum-contaminated soil enhanced by aged refuse. Chemosphere, 222:98-105.
Chettri, B., Akoijam, C., & Singh, A. K. (2022). Dynamics and prevalence of specific hydrocarbonoclastic bacterial population with respect to nutrient treatment levels in crude oil sludge. Archives of Microbiology, 204(12):1-14.
Das, N., & Chandran, P. (2011). Microbial degradation of petroleum hydrocarbon contaminants: An overview. Biotechnology Research International, 2011(941810):1-13.
Dewinta, A. F., Hartono, E. S., Yusni, E., Susetya, I. E., & Siregar, R. F. (2020). The ability of spirulina sp. Microalgae as a phytoremediation agents in liquid waste of handling fish from Cemara Market, Medan. Jurnal Ilmiah Perikanan dan Kelautan, 12(2):286–295.
Djenar, N. S., & Mulyono, E. W. S. (2017). The kinetics both of growth and metabolite production of X.Campestris using of 4% liquid sugar substrate from cassava hydrolisate. Jurnal Bahan Alam Terbarukan, 6(1):45-49.
Dos Santos, H. F., Cury, J. C., do Carmo, F. L., Dos Santos, A. L., Tiedje, J., van Elsas, J. D., Rosado, A. S., & Peixoto, R. S. (2011). Mangrove bacterial diversity and the impact of oil contamination revealed by pyrosequencing: Bacterial proxies for oil pollution. PLoS ONE, 6(3):1-8.
Dwinovantyo, A., Prartono, T., Rahmaniar, R., Prabowo, N. W., & Susanti, S. (2016). Oil spill biodegradation by bacteria isolated from Jakarta Bay marine sediments. ILMU KELAUTAN: Indonesian Journal of Marine Sciences, 21(1):29.
Dzionek, A., Wojcieszyńska, D., & Guzik, U. (2016). Natural carriers in bioremediation: A review. Electronic Journal of Biotechnology, 23:28-36.
Emanuele, D. A., Cosentino, F., & Campanella, L. (2017). Use of algae scenedesmus as bioindicators of water pollution from active ingredients. Journal of Analytical & Pharmaceutical Research, 6(5):00189.
Febriansyah, S. C., Hakim, L., & Retnaningdyah, C. (2022). Evaluation of mangrove water quality in Pancer Cengkrong, Trenggalek and Sine, Tulungagung, East Java, Indonesia using phytoplankton as bioindicators. Jurnal Ilmiah Perikanan dan Kelautan, 14(2):297–312.
Gao, Y., Cai, M., Shi, K., Sun, R., Liu, S., Li, Q., Wang, X., Hua, W., Qiao, Y., Xue, J., & Xiao, X. (2023). Bioaugmentation enhance the bioremediation of marine crude oil pollution: Microbial communities and metabolic pathways. Water Science and Technology, 87(1):228-238.
Geetha, S. J., Banat, I. M., & Joshi, S. J. (2018). Biosurfactants: Production and potential applications in microbial enhanced oil recovery (MEOR). Biocatalysis and Agricultural Biotechnology, 14:23-32.
Huang, B., Zhang, Z., Ding, N., Zhuang, Y., Zhang, G., & Fei, P. (2022). Preparation of acylated chitosan with caffeic acid in non-enzymatic and enzymatic systems: Characterization and application in pork preservation. International Journal of Biological Macromolecules, 194:246-253.
Jabbar, N. M., Alardhi, S. M., Mohammed, A. K., Salih, I. K., & Albayati, T. M. (2022). Challenges in the implementation of bioremediation processes in petroleum-contaminated soils: A review. Environmental Nanotechnology, Monitoring and Management, 18:100694.
Juhasz, A. L., Aleer, S., & Adetutu, E. M. (2014). Predicting PAH bioremediation efficacy using bioaccessibility assessment tools: Validation of PAH biodegradation-bioaccessibility correlations. International Biodeterioration and Biodegradation, 95(PB):320-29.
Kapahi, M., & Sachdeva, S. (2019). Bioremediation options for heavy metal pollution. Journal of Health & Pollution, 9(24):191203.
Karigar, C. S., & Rao, S. S. (2011). Role of microbial enzymes in the bioremediation of pollutants: A review. Enzyme Research, 2011(805187).
Katam, K., Maetani, K., Shimizu, T., Nakajima, J., & Bhattacharyya, D. (2018). Study of aerobic biodegradation of surfactants and fluorescent whitening agents in detergents of a few selected Asian countries (India, Indonesia, Japan, and Thailand). Journal of Water and Environment Technology, 16(1):18-29.
Kaur, A. (2019). Microbial degradation of hydrocarbons in the ecosystem. Microbial Action on Hydrocarbons, 54(3):343-351.
Kebede, G., Tafese, T., Abda, E. M., Kamaraj, M., & Assefa, F. (2021). Factors influencing the bacterial bioremediation of hydrocarbon contaminants in the soil: Mechanisms and impacts. Journal of Chemistry, 2021(9823362).
Kielkopf, C. L., Bauer, W., & Urbatsch, I. L. (2020). Bradford assay for determining protein concentration. Cold Spring Harbor Protocols, 2020(4):102269.
Kriwy, P., & Uthicke, S. (2011). Microbial diversity in marine biofilms along a water quality gradient on the Great Barrier Reef. Systematic and Applied Microbiology, 34(2):116-126.
Kurniawan, A., Salamah, L. N., Amin, A. A., & Yanuar, A. (2020). Biosorption of Cu(II) by natural biofilm matrix of Lahor Reservoirs, Indonesia. IOP Conference Series: Earth and Environmental Science, 493(1):20-21.
Kurniawan, A., & Yamamoto, T. (2013). Biofilm Polymer for Biosorption of Pollutant Ions. Procedia Environmental Sciences, 17:179–187.
Kurniawan, A., & Fukuda, Y. (2023). Analysis of the electric charge properties of biofilm for the development of biofilm matrices as biosorbents for water pollutant. Energy, Ecology and Environment, 8(1):62–68.
Luo, Q., Liu, L., & Hou, D. (2022). Bioremediation of oily seawater by Bacteria immobilization on a novel carrier material containing nutrients. Journal of Microbiological Methods, 192:106392.
Sujadi, F. M., Yahya, Y., Kurniawan, A., & Aziz Amin, A. (2020). Lubricant oil bioremediation by Rhodococcus erythropolis bacteria and indigenous bacteria isolated from water contaminated with lubricant oil. Research Journal of Life Science, 7(1):62-74.
Masithah, E. D., Rahardja, B. S., & Hardianie, T. N. O. K. (2011). Studi perbandingan kemampuan Nannochloropsis sp. dan Spirulina sp. sebagai agen bioremidiasi terhadap logam berat timbal (Pb). Jurnal Ilmiah Perikanan dan Kelautan, 3(2):167–173.
Mustapha, M. U., & Halimoon, N. (2015). Microorganisms and biosorption of heavy metals in the environment: A review paper. Journal of Microbial & Biochemical Technology, 07(05):253-256.
Ogbuka, J. C., Nwanmuoh, E. E., Ogbo, A. I., & Achoru, F. E. (2022). Offshore oil spill response base and management of deepwater/offshore oil resources in the Nigerian marine waters: A review. International Journal of Environmental Impacts: Management, Mitigation and Recovery, 5(1):65-81.
Olukanni, D. O., Agunwamba, J. C., & Ugwu, E. I. (2014). Biosorption of heavy metals in industrial wastewater using micro-organisms (Pseudomonas aeruginosa). American Journal of Scientific and Industrial Research, 5(2):81-87.
Paglarini, C. de S., Martini, S., & Pollonio, M. A. R. (2019). Using emulsion gels made with sonicated soy protein isolate dispersions to replace fat in frankfurters. LWT, 99:453-459.
Pi, Y., Chen, B., Bao, M., Fan, F., Cai, Q., Ze, L., & Zhang, B. (2017). Microbial degradation of four crude oil by biosurfactant producing strain Rhodococcus sp. Bioresource Technology, 232:263-269.
Prenafeta-Boldú, F. X., Vervoort, J., Grotenhuis, J. T. C., & Van Groenestijn, J. W. (2002). Substrate interactions during the biodegradation of benzene, toluene, ethylbenzene, and xylene (BTEX) hydrocarbons by the fungus Cladophialophora sp. strain T1. Applied and Environmental Microbiology, 68(6):2660-2665.
Rabus, R., Boll, M., Heider, J., Meckenstock, R. U., Buckel, W., Einsle, O., Ermler, U., Golding, B. T., Gunsalus, R. P., Kroneck, P. M. H., Krüger, M., Lueders, T., Martins, B. M., Musat, F., Richnow, H. H., Schink, B., Seifert, J., Szaleniec, M., Treude, T., Ullmann, G. M., Vogt, C., von Bergen, M., & Wilkes, H. (2016). Anaerobic microbial degradation of hydrocarbons: From enzymatic reactions to the environment. Journal of Molecular Microbiology and Biotechnology, 26(1-3):5-28.
Radwan, S. S., Khanafer, M. M., & Al-Awadhi, H. A. (2019). Ability of the so-called obligate hydrocarbonoclastic bacteria to utilize nonhydrocarbon substrates thus enhancing their activities despite their misleading name. BMC Microbiology, 19(1):1-12.
Rahman, R. N. Z. R. A., Latip, W., Adlan, N. A., Sabri, S., & Ali, M. S. M. (2022). Bacteria consortia enhanced hydrocarbon degradation of waxy crude oil. Archives of Microbiology, 204(12):1-13.
Roche, K. R., Drummond, J. D., Boano, F., Packman, A. I., Battin, T. J., & Hunter, W. R. (2017). Benthic biofilm controls on fine particle dynamics in streams. Water Resources Research, 53(1):222-236.
Shintani, M., Sugiyama, K., Sakurai, T., Yamada, K., & Kimbara, K. (2019). Biodegradation of A-fuel oil in soil samples with bacterial mixtures of Rhodococcus and Gordonia strains under low temperature conditions. Journal of Bioscience and Bioengineering, 127(2):197-200.
Silva, B., Martins, M., Rosca, M., Rocha, V., Lago, A., Neves, I. C., & Tavares, T. (2020). Waste-based biosorbents as cost-effective alternatives to commercial adsorbents for the retention of fluoxetine from water. Separation and Purification Technology, 235:116139.
Sirotkin, A. V., & Harrath, A. H. (2017). Influence of oil-related environmental pollutants on female reproduction. Reproductive Toxicology, 71:142-145.
Syakti, A. D., Lestari, P., Simanora, S., Sari, L. K., Lestari, F., Idris, F., Agustiadi, T., Akhlus, S., Hidayati, N. V., & Riyanti. (2019). Culturable hydrocarbonoclastic marine bacterial isolates from Indonesian seawater in the Lombok Strait and Indian Ocean. Heliyon, 5(5):e01594.
Tam, N. F. Y., Wong, Y. S., & Wong, M. H. (2009). Novel technology in pollutant removal at source and bioremediation. Ocean and Coastal Management, 52(7):368-373.
Tamoor, M., Samak, N. A., Jia, Y., Mushtaq, M. U., Sher, H., Bibi, M., & Xing, J. (2021). Potential use of microbial enzymes for the conversion of plastic waste into value-added products: A viable solution. Frontiers in Microbiology, 12:777727.
Tornero, V., & Hanke, G. (2016). Chemical contaminants entering the marine environment from sea-based sources: A review with a focus on European seas. Marine Pollution Bulletin, 112(1-2):17-38.
Varjani, S., & Upasani, V. N. (2021). Bioaugmentation of Pseudomonas aeruginosa NCIM 5514 – A novel oily waste degrader for treatment of petroleum hydrocarbons. Bioresource Technology, 319:124240.
Wang, Q., Zhang, S., Li, Y., & Klassen, W. (2011). Potential approaches to improving biodegradation of hydrocarbons for bioremediation of crude oil pollution. Journal of Environmental Protection, 02(01):47-55.
Wignyanto, Hidayat, N., & Ariningrum Alfia. (2009). Bioremediasi limbah cair sentra industri tempe sanan. Jurnal Teknologi Pertanian, 10(2):123-136.
WÅ‚óka, D., Placek, A., Rorat, A., Smol, M., & Kacprzak, M. (2017). The evaluation of polycyclic aromatic hydrocarbons (PAHs) biodegradation kinetics in soil amended with organic fertilizers and bulking agents. Ecotoxicology and Environmental Safety, 145:161-168.
Wu, M., Li, W., Dick, W. A., Ye, X., Chen, K., Kost, D., & Chen, L. (2017). Bioremediation of hydrocarbon degradation in a petroleum-contaminated soil and microbial population and activity determination. Chemosphere, 169:124-130.
Yaashikaa, P. R., Senthil Kumar, P., Mohan Babu, V. P., Kanaka Durga, R., Manivasagan, V., Saranya, K., & Saravanan, A. (2019). Modelling on the removal of Cr(VI) ions from aquatic system using mixed biosorbent (Pseudomonas stutzeri and acid treated Banyan tree bark). Journal of Molecular Liquids, 276:362-370.