Date Log
Copyright (c) 2024 Jurnal Ilmiah Perikanan dan Kelautan
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
1. Copyright of the article is transferred to the journal, by the knowledge of the author, whilst the moral right of the publication belongs to the author.
2. The legal formal aspect of journal publication accessibility refers to Creative Commons Atribusi-Non Commercial-Share alike (CC BY-NC-SA), (https://creativecommons.org/licenses/by-nc-sa/4.0/)
3. The articles published in the journal are open access and can be used for non-commercial purposes. Other than the aims mentioned above, the editorial board is not responsible for copyright violation
The manuscript authentic and copyright statement submission can be downloaded ON THIS FORM.
Study on Spatio-temporal Distribution of Chlorophyll-a on Pelagic Catch Productivity in Muara Bendera, West Java, Indonesia
Corresponding Author(s) : Masita Dwi Mandini Manessa
Jurnal Ilmiah Perikanan dan Kelautan, Vol. 16 No. 2 (2024): JURNAL ILMIAH PERIKANAN DAN KELAUTAN
Abstract
Graphical Abstract
Highlight Research
- The trend of chlorophyll-a in the pelagic fish catchment area of the Muara Bendera has increased.
- Trend of chlorophyll-a values around the waters of the Citarum and Cisadane River Estuaries increased.
- Chlorophyll-a and pelagic CPUE have a negative relationship.
- The waters around the mouth of the Citarum River are mesotrophic - eutrophic waters
Abstract
Chlorophyll-a has been considered an indicator of pelagic fish abundance in waters. Although a high nutrient load causes eutrophication, leading to fish mortality, global-scale climate anomalies will also influence the oceanographic conditions of the seas. This study aimed to investigate spatial patterns and trends of chlorophyll-a, the relationship between chlorophyll-a and pelagic fish catch productivity, and the effect of ENSO and IOD on pelagic fish catch productivity. The chlorophyll-a data were obtained from the SeaWiFS and Terra-Aqua MODIS time-series datasets of ocean color satellites. The results indicated that Jakarta Bay had the highest chlorophyll-A concentration. The Chlorophyll-A concentrations declined as the distance between the estuary and the coast grew. From 1997 to 2021, the regional pattern of increasing chlorophyll-a concentrations in the Citarum and Cisdane estuaries was continuous. Since 2001, the concentration of chlorophyll-a in Jakarta Bay has declined, whereas it has begun to climb in the seas of the North Seribu Islands. The increasing chlorophyll-A trend in the Seribu Islands is attributed to rising nitrate levels induced by human-driven coral degradation. Between 1997 and 2021, the concentration of chlorophyll-a in the Muara Bendera fishing region grew by +0.013 mg/m3/year, or 1.43 percent each year. The correlation between chlorophyll-a and pelagic fish catch productivity was -0.13. ENSO does not affect the productivity of pelagic catches in this region. However, it was discovered that IOD reduced the productivity of low-category pelagic catches.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Ajani, P. A., Larsson, M. E., Woodcock, S., Rubio, A., Farrell, H., Brett, S., & Murray, S. A. (2018). Bloom drivers of the potentially harmful dinoflagellate Prorocentrum minimum (Pavillard) Schiller in a south eastern temperate Australian estuary. Estuarine, Coastal and Shelf Science, 215(16):161–171.
- Akram, H., Hussain, S., Mazumdar, P., Chua, K. O., Butt, T. E., & Harikrishna, J. A. (2023). Mangrove Health: A Review of Functions, Threats, and Challenges Associated with Mangrove Management Practices. Forests, 14(9):1-38.
- Alms, V., & Wolff, M. (2020). Identification of Drivers of Change of the Gulf of Nicoya Ecosystem (Costa Rica). Frontiers in Marine Science, 7(707):1-14.
- Apriansyah, Atmadipoera, A. S., Nugroho, D., Jaya, I., & Akhir, M. F. (2023). Simulated seasonal oceanographic changes and their implication for the small pelagic fisheries in the Java Sea, Indonesia. Marine Environmental Research, 188(6):1-51.
- Arun Kumar, S. V. V., Babu, K. N., & Shukla, A. K. (2015). Comparative Analysis of Chlorophyll- a Distribution from SeaWiFS, MODIS-Aqua, MODIS-Terra and MERIS in the Arabian Sea. Marine Geodesy, 38(1):40–57.
- Attila, J., Kauppila, P., Kallio, K. Y., Alasalmi, H., Keto, V., Bruun, E., & Koponen, S. (2018). Applicability of Earth Observation chlorophyll-a data in assessment of water status via MERIS ” With implications for the use of OLCI sensors. Remote Sensing of Environment, 212(9):273–287.
- Casolaro, A., Capone, V., Iannuzzo, G., & Camastra, F. (2023). Deep Learning for Time Series Forecasting: Advances and Open Problems. Information, 14(598):1-35.
- Ciancia, E., Coviello, I., Di Polito, C., Lacava, T., Pergola, N., Satriano, V., & Tramutoli, V. (2018). Investigating the chlorophyll-a variability in the Gulf of Taranto (North-western Ionian Sea) by a multi-temporal analysis of MODIS-Aqua Level 3/Level 2 data. Continental Shelf Research, 155(4):34–44.
- Colella, S., Falcini, F., Rinaldi, E., Sammartino, M., & Santoleri, R. (2016). Mediterranean Ocean Colour Chlorophyll Trends. Plos One, 11(6):1-16.
- Dahlet, L. I., Downey-Breedt, N., Arce, G., Sauer, W. H. H., & Gasalla, M. A. (2019). Comparative study of skipjack tuna Katsuwonus pelamis (Scombridae) fishery stocks from the South Atlantic and western Indian oceans. Scientia Marina, 83(1):19-29.
- Damar, A., Hesse, K.-J., Colijn, F., & Vitner, Y. (2019). The eutrophication states of the Indonesian sea large marine ecosystem: Jakarta Bay, 2001–2013. Deep Sea Research Part II: Topical Studies in Oceanography, 163(5):72–86.
- Daqamseh, S., Al-Fugara, A., Pradhan, B., Al-Oraiqat, A., & Habib, M. (2019). MODIS Derived Sea Surface Salinity, Temperature, and Chlorophyll-a Data for Potential Fish Zone Mapping: West Red Sea Coastal Areas, Saudi Arabia. Sensors, 19(9):1-25.
- Devlin, M., & Brodie, J. (2023). Nutrients and eutrophication. In A. Reichelt-Brushett (Ed.), Marine pollution - monitoring, management and mitigation. (pp. 75-100). Springer.
- Frouin, R., McPherson, J., Ueyoshi, K., & Franz, B. A. (2012). A time series of photosynthetically available radiation at the ocean surface from SeaWiFS and MODIS data. Proceedings of SPIE - The International Society for Optical Engineering, 8525(1):1-12.
- Fu, Y., Xu, S., Zhang, C., & Sun, Y. (2018). Spatial downscaling of MODIS Chlorophyll-a using Landsat 8 images for complex coastal water monitoring. Estuarine, Coastal and Shelf Science, 209(10):149–159.
- Ghosh, S., Chatterjee, S., Shiva Prasad, G., & Pal, P. (2021). Effect of Climate Change on Aquatic Ecosystem and Production of Fisheries. In M. M. Shah, J. Pan, & A. Devlin (Eds.), Inland waters - dynamics and ecology. (pp. 1-11). IntechOpen.
- Ha, N., Koike, K., & Nhuan, M. (2013). Improved Accuracy of Chlorophyll-a Concentration Estimates from MODIS Imagery Using a Two-Band Ratio Algorithm and Geostatistics: As Applied to the Monitoring of Eutrophication Processes over Tien Yen Bay (Northern Vietnam). Remote Sensing, 6(1):421–442.
- Håkanson, L., Bryhn, A. C., & Blenckner, T. (2007). Operational effect variables and functional ecosystem classifications – a review on empirical models for aquatic systems along a salinity gradient. International Review of Hydrobiology, 92(3):326-357.
- Haridhi, H. A., Nanda, M., Haditiar, Y., & Rizal, S. (2018). Application of Rapid Appraisals of Fisheries Management System (RAFMS) to identify the seasonal variation of fishing ground locations and its corresponding fish species availability at Aceh waters, Indonesia. Ocean & Coastal Management, 154(4):46–54.
- Hsiao, P.-Y., Shimada, T., Lan, K.-W., Lee, M.-A., & Liao, C.-H. (2021). Assessing Summertime Primary Production Required in Changed Marine Environments in Upwelling Ecosystems Around the Taiwan Bank. Remote Sensing, 13(4):1-22.
- Hu, C., Feng, L., & Guan, Q. (2021). A Machine Learning Approach to Estimate Surface Chlorophyll a Concentrations in Global Oceans from Satellite Measurements. IEEE Transactions on Geoscience and Remote Sensing, 59(6):4590–4607.
- Hu, C., Lee, Z., & Franz, B. (2012). Chlorophyll a Algorithms for oligotrophic oceans: A novel approach based on three"band reflectance difference. Journal of Geophysical Research: Oceans, 117(1):1-25.
- Ihsan, Y. N., Fellatami, K., Pasaribu, B., & Pribadi, T. D. K. (2023). Nutrient variability, pollution, and trophic status in Muara Gembong, Bekasi. AACL Bioflux, 16(3):1669–1681.
- Jakobsen, H. H., & Markager, S. (2016). Carbon-to-chlorophyll ratio for phytoplankton in temperate coastal waters: Seasonal patterns and relationship to nutrients. Limnology and Oceanography, 61(5):1853–1868.
- James, N. C., Leslie, T. D., Potts, W. M., Whitfield, A. K., & Rajkaran, A. (2019). The importance of different juvenile habitats as nursery areas for a ubiquitous estuarine-dependent marine fish species. Estuarine, Coastal and Shelf Science, 226(11):1-18.
- Lehodey, P., Bertrand, A., Hobday, A. J., Kiyofuji, H., McClatchie, S., Menkès, C. E., Pilling, G., Polovina, J., & Tommasi, D. (2020). ENSO Impact on Marine Fisheries and Ecosystems In M. J. McPhaden, A. Santoso, W. Cai (Eds.), El Niño Southern oscillation in a changing
- climate. (pp. 429-451). American Geophysical Union.
- Lumban-Gaol, J., Siswanto, E., Mahapatra, K., Natih, N. M. N., Nurjaya, I. W., Hartanto, M. T., Maulana, E., Adrianto, L., Rachman, H. A., Osawa, T., Rahman, B. M. K., & Permana, A. (2021). Impact of the Strong Downwelling (Upwelling) on Small Pelagic Fish Production during the 2016 (2019) Negative (Positive) Indian Ocean Dipole Events in the Eastern Indian Ocean off Java. Climate, 9(2):1-29.
- Miura, T., Smith, C. Z., & Yoshioka, H. (2021). Validation and analysis of Terra and Aqua MODIS, and SNPP VIIRS vegetation indices under zero vegetation conditions: A case study using Railroad Valley Playa. Remote Sensing of Environment, 257(6):1-19.
- Mohebzadeh, H., Yeom, J., & Lee, T. (2020). Spatial Downscaling of MODIS Chlorophyll-a with Genetic Programming in South Korea. Remote Sensing, 12(9):1-19.
- Mukhtar, M. K., Supriatna, & Manessa, M. D. M. (2021). The validation of water quality parameter algorithm using Landsat 8 and Sentinel-2 image in Palabuhanratu Bay. IOP Conference Series: Earth and Environmental Science, 846(2):1-10.
- Muskananfola, M. R., Jumsar, & Wirasatriya, A. (2021). Spatio-temporal distribution of chlorophyll-a concentration, sea surface temperature and wind speed using aqua-modis satellite imagery over the Savu Sea, Indonesia. Remote Sensing Applications: Society and Environment, 22(2):1-18.
- Nastiti A. S., Mujiyanto, & Krismono. (2020). The abundance of Chaetoceros spp. and its relation to the water quality parameters in the Muara Gembong Waters, West Jawa. Jurnal Biologi Indonesia, 16(1):39-46.
- Niu, L., Luo, X., Hu, S., Liu, F., Cai, H., Ren, L., Ou, S., Zeng, D., & Yang, Q. (2020). Impact of anthropogenic forcing on the environmental controls of phytoplankton dynamics between 1974 and 2017 in the Pearl River estuary, China. Ecological Indicators, 116(9):1-19.
- Paparazzo, F. E., Pierattini Martinez, R., Fabro, E., Gonçalves, R. J., Crespi-Abril, A. C., Soria, G. R., Barbieri, E. A., & Almandoz, G. O. (2021). Relevance of sporadic upwelling events on primary productivity: The key role of nitrogen in a gulf of SW Atlantic Ocean. Estuarine, Coastal and Shelf Science, 249(2):1-16.
- Pitcher G C, Jacinto G S. (2020). Ocean deoxygenation links to harmful algal blooms. In: Laffoley eds.Ocean deoxygenation: Everyone's problem. International Union for Conservation of Nature, Gland, Switzerland. p.153-170. Gland, Switzerland: International Union for Conservation of Nature (IUCN).
- Poddar, S., Chacko, N., & Swain, D. (2019). Estimation of Chlorophyll-a in Northern Coastal Bay of Bengal Using Landsat-8 OLI and Sentinel-2 MSI Sensors. Frontiers in Marine Science, 6(598):1-11.
- Ramadhiani, A. F., & Suharyanto. (2021). Analysis of river water quality and pollution control strategies in the upper Citarum River. IOP Conference Series: Earth and Environmental Science, 623(2):1-8.
- Rodrigues, S. M., Almeida, C. M. R., Silva, D., Cunha, J., Antunes, C., Freitas, V., & Ramos, S. (2019). Microplastic contamination in an urban estuary: Abundance and distribution of microplastics and fish larvae in the Douro estuary. Science of The Total Environment, 659(16):1071–1081.
- Roy, D. P., Kovalskyy, V., Zhang, H. K., Vermote, E. F., Yan, L., Kumar, S. S., & Egorov, A. (2016). Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote Sensing of Environment, 185(14):57-70.
- Saulquin, B., Fablet, R., Mangin, A., Mercier, G., Antoine, D., & Fanton d'Andon, O. (2013). Detection of linear trends in multisensor time series in the presence of autocorrelated noise: Application to the chlorophyll"a SeaWiFS and MERIS data sets and extrapolation to the incoming Sentinel 3"OLCI mission. Journal of Geophysical Research: Oceans, 118(8):3752–3763.
- Saulquin, B., Gohin, F., & Fanton d'Andon, O. (2019). Interpolated fields of satellite-derived multi-algorithm chlorophyll-a estimates at global and European scales in the frame of the European Copernicus-Marine Environment Monitoring Service. Journal of Operational Oceanography, 12(1):47–57.
- Seegers, B. N., Stumpf, R. P., Schaeffer, B. A., Loftin, K. A., & Werdell, P. J. (2018). Performance metrics for the assessment of satellite data products: an ocean color case study. Optics Express, 26(6):7404-7422.
- Sembiring E, Fareza A A, Suendo V et al. 2020. The Presence of Microplastics in Water, Sediment, and Milkfish (Chanos chanos) at the Downstream Area of Citarum River, Indonesia. Water, Air, and Soil Pollution, 231(7):1-14.
- Ser-Giacomi, E., Zinger, L., Malviya, S., De Vargas, C., Karsenti, E., Bowler, C., & De Monte, S. (2018). Ubiquitous abundance distribution of non-dominant plankton across the global ocean. Nature Ecology & Evolution, 2(8):1243–1249.
- Setyohadi, D., Zakiyah, U., Sambah, A. B., & Wijaya, A. (2021). Upwelling Impact on Sardinella lemuru during the Indian Ocean Dipole in the Bali Strait, Indonesia. Fishes, 6(8):1-9.
- Sholeh, M., Pranoto, P., Budiastuti, S., & Sutarno, S. (2018). Analysis of Citarum River pollution indicator using chemical, physical, and bacteriological methods. AIP Conference Proceedings, 2049(1):1-9.
- Tangke, U., Laisouw, R., Umagap, W. A., & Darmawaty. (2021). Variability of chlorophyll-a concentration relation to fish catch of Indian mackerel in West Halmahera waters. IOP Conference Series: Earth and Environmental Science, 777(2):1-9.
- Tangke, U., & Senen, B. (2020). Distribution of sea surface temperature and chlorophyll-a concentration its correlation with small pelagic fish catch in Dodinga Bay. IOP Conference Series: Earth and Environmental Science, 584(2):1-9.
- Tweddle, J. F., Gubbins, M., & Scott, B. E. (2018). Should phytoplankton be a key consideration for marine management? Marine Policy, 97(11):1–9.
- Van Meerssche, E., & Pinckney, J. L. (2019). Nutrient Loading Impacts on Estuarine Phytoplankton Size and Community Composition: Community-Based Indicators of Eutrophication. Estuaries and Coasts, 42(2):504–512.
- Van Trijp, D. (2021). Fresh Fish: Observation up Close in Late Seventeenth-Century England. Notes and Records: The Royal Society Journal of the History of Science, 75(3):311–332.
- Vanhellemont, Q., & Ruddick, K. (2021). Atmospheric correction of Sentinel-3/OLCI data for mapping of suspended particulate matter and chlorophyll-a concentration in Belgian turbid coastal waters. Remote Sensing of Environment, 256(5):1-18.
- Wang, Yanfeng, Yao, L., Chen, P., Yu, J., & Wu, Q. (2020). Environmental Influence on the Spatiotemporal Variability of Fishing Grounds in the Beibu Gulf, South China Sea. Journal of Marine Science and Engineering, 8(957):1-12.
- Wang, Yueqi, Tian, X., & Gao, Z. (2021). Evolution of satellite derived chlorophyll-a trends in the Bohai and Yellow Seas during 2002–2018: Comparison between linear and nonlinear trends. Estuarine, Coastal and Shelf Science, 259(12):1-15.
- Welliken, M. A., Melmambessy, E. H. ., Merly, S. L., Pangaribuan, R. D., Lantang, B., Hutabarat, J., & Wirasatriya, A. (2018). Variability Chlorophyll-a And Sea Surface Temperature As The Fishing Ground Basis Of Mackerel Fish In The Arafura Sea. E3S Web of Conferences, 73(1):1-5.
- Wirasatriya, A., Setiawan, R. Y., & Subardjo, P. (2017). The Effect of ENSO on the Variability of Chlorophyll-a and Sea Surface Temperature in the Maluku Sea. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(12):5513–5518.
- Xu, T., Wei, Z., Li, S., Susanto, R. D., Radiarta, N., Yuan, C., Setiawan, A., Kuswardani, A., Agustiadi, T., & Trenggono, M. (2021). Satellite-Observed Multi-Scale Variability of Sea Surface Chlorophyll-a Concentration along the South Coast of the Sumatra-Java Islands. Remote Sensing, 13(2817):1-19.
- Yin, Z., Li, J., Huang, J., Wang, S., Zhang, F., & Zhang, B. (2021). Steady increase in water clarity in Jiaozhou Bay in the Yellow Sea from 2000 to 2018: Observations from MODIS. Journal of Oceanology and Limnology, 39(3):800–813.
- Yu, Y., Wang, P., Wang, C., & Wang, X. (2018). Optimal reservoir operation using multi-objective evolutionary algorithms for potential estuarine eutrophication control. Journal of Environmental Management, 223(19):758–770.
References
Ajani, P. A., Larsson, M. E., Woodcock, S., Rubio, A., Farrell, H., Brett, S., & Murray, S. A. (2018). Bloom drivers of the potentially harmful dinoflagellate Prorocentrum minimum (Pavillard) Schiller in a south eastern temperate Australian estuary. Estuarine, Coastal and Shelf Science, 215(16):161–171.
Akram, H., Hussain, S., Mazumdar, P., Chua, K. O., Butt, T. E., & Harikrishna, J. A. (2023). Mangrove Health: A Review of Functions, Threats, and Challenges Associated with Mangrove Management Practices. Forests, 14(9):1-38.
Alms, V., & Wolff, M. (2020). Identification of Drivers of Change of the Gulf of Nicoya Ecosystem (Costa Rica). Frontiers in Marine Science, 7(707):1-14.
Apriansyah, Atmadipoera, A. S., Nugroho, D., Jaya, I., & Akhir, M. F. (2023). Simulated seasonal oceanographic changes and their implication for the small pelagic fisheries in the Java Sea, Indonesia. Marine Environmental Research, 188(6):1-51.
Arun Kumar, S. V. V., Babu, K. N., & Shukla, A. K. (2015). Comparative Analysis of Chlorophyll- a Distribution from SeaWiFS, MODIS-Aqua, MODIS-Terra and MERIS in the Arabian Sea. Marine Geodesy, 38(1):40–57.
Attila, J., Kauppila, P., Kallio, K. Y., Alasalmi, H., Keto, V., Bruun, E., & Koponen, S. (2018). Applicability of Earth Observation chlorophyll-a data in assessment of water status via MERIS ” With implications for the use of OLCI sensors. Remote Sensing of Environment, 212(9):273–287.
Casolaro, A., Capone, V., Iannuzzo, G., & Camastra, F. (2023). Deep Learning for Time Series Forecasting: Advances and Open Problems. Information, 14(598):1-35.
Ciancia, E., Coviello, I., Di Polito, C., Lacava, T., Pergola, N., Satriano, V., & Tramutoli, V. (2018). Investigating the chlorophyll-a variability in the Gulf of Taranto (North-western Ionian Sea) by a multi-temporal analysis of MODIS-Aqua Level 3/Level 2 data. Continental Shelf Research, 155(4):34–44.
Colella, S., Falcini, F., Rinaldi, E., Sammartino, M., & Santoleri, R. (2016). Mediterranean Ocean Colour Chlorophyll Trends. Plos One, 11(6):1-16.
Dahlet, L. I., Downey-Breedt, N., Arce, G., Sauer, W. H. H., & Gasalla, M. A. (2019). Comparative study of skipjack tuna Katsuwonus pelamis (Scombridae) fishery stocks from the South Atlantic and western Indian oceans. Scientia Marina, 83(1):19-29.
Damar, A., Hesse, K.-J., Colijn, F., & Vitner, Y. (2019). The eutrophication states of the Indonesian sea large marine ecosystem: Jakarta Bay, 2001–2013. Deep Sea Research Part II: Topical Studies in Oceanography, 163(5):72–86.
Daqamseh, S., Al-Fugara, A., Pradhan, B., Al-Oraiqat, A., & Habib, M. (2019). MODIS Derived Sea Surface Salinity, Temperature, and Chlorophyll-a Data for Potential Fish Zone Mapping: West Red Sea Coastal Areas, Saudi Arabia. Sensors, 19(9):1-25.
Devlin, M., & Brodie, J. (2023). Nutrients and eutrophication. In A. Reichelt-Brushett (Ed.), Marine pollution - monitoring, management and mitigation. (pp. 75-100). Springer.
Frouin, R., McPherson, J., Ueyoshi, K., & Franz, B. A. (2012). A time series of photosynthetically available radiation at the ocean surface from SeaWiFS and MODIS data. Proceedings of SPIE - The International Society for Optical Engineering, 8525(1):1-12.
Fu, Y., Xu, S., Zhang, C., & Sun, Y. (2018). Spatial downscaling of MODIS Chlorophyll-a using Landsat 8 images for complex coastal water monitoring. Estuarine, Coastal and Shelf Science, 209(10):149–159.
Ghosh, S., Chatterjee, S., Shiva Prasad, G., & Pal, P. (2021). Effect of Climate Change on Aquatic Ecosystem and Production of Fisheries. In M. M. Shah, J. Pan, & A. Devlin (Eds.), Inland waters - dynamics and ecology. (pp. 1-11). IntechOpen.
Ha, N., Koike, K., & Nhuan, M. (2013). Improved Accuracy of Chlorophyll-a Concentration Estimates from MODIS Imagery Using a Two-Band Ratio Algorithm and Geostatistics: As Applied to the Monitoring of Eutrophication Processes over Tien Yen Bay (Northern Vietnam). Remote Sensing, 6(1):421–442.
Håkanson, L., Bryhn, A. C., & Blenckner, T. (2007). Operational effect variables and functional ecosystem classifications – a review on empirical models for aquatic systems along a salinity gradient. International Review of Hydrobiology, 92(3):326-357.
Haridhi, H. A., Nanda, M., Haditiar, Y., & Rizal, S. (2018). Application of Rapid Appraisals of Fisheries Management System (RAFMS) to identify the seasonal variation of fishing ground locations and its corresponding fish species availability at Aceh waters, Indonesia. Ocean & Coastal Management, 154(4):46–54.
Hsiao, P.-Y., Shimada, T., Lan, K.-W., Lee, M.-A., & Liao, C.-H. (2021). Assessing Summertime Primary Production Required in Changed Marine Environments in Upwelling Ecosystems Around the Taiwan Bank. Remote Sensing, 13(4):1-22.
Hu, C., Feng, L., & Guan, Q. (2021). A Machine Learning Approach to Estimate Surface Chlorophyll a Concentrations in Global Oceans from Satellite Measurements. IEEE Transactions on Geoscience and Remote Sensing, 59(6):4590–4607.
Hu, C., Lee, Z., & Franz, B. (2012). Chlorophyll a Algorithms for oligotrophic oceans: A novel approach based on three"band reflectance difference. Journal of Geophysical Research: Oceans, 117(1):1-25.
Ihsan, Y. N., Fellatami, K., Pasaribu, B., & Pribadi, T. D. K. (2023). Nutrient variability, pollution, and trophic status in Muara Gembong, Bekasi. AACL Bioflux, 16(3):1669–1681.
Jakobsen, H. H., & Markager, S. (2016). Carbon-to-chlorophyll ratio for phytoplankton in temperate coastal waters: Seasonal patterns and relationship to nutrients. Limnology and Oceanography, 61(5):1853–1868.
James, N. C., Leslie, T. D., Potts, W. M., Whitfield, A. K., & Rajkaran, A. (2019). The importance of different juvenile habitats as nursery areas for a ubiquitous estuarine-dependent marine fish species. Estuarine, Coastal and Shelf Science, 226(11):1-18.
Lehodey, P., Bertrand, A., Hobday, A. J., Kiyofuji, H., McClatchie, S., Menkès, C. E., Pilling, G., Polovina, J., & Tommasi, D. (2020). ENSO Impact on Marine Fisheries and Ecosystems In M. J. McPhaden, A. Santoso, W. Cai (Eds.), El Niño Southern oscillation in a changing
climate. (pp. 429-451). American Geophysical Union.
Lumban-Gaol, J., Siswanto, E., Mahapatra, K., Natih, N. M. N., Nurjaya, I. W., Hartanto, M. T., Maulana, E., Adrianto, L., Rachman, H. A., Osawa, T., Rahman, B. M. K., & Permana, A. (2021). Impact of the Strong Downwelling (Upwelling) on Small Pelagic Fish Production during the 2016 (2019) Negative (Positive) Indian Ocean Dipole Events in the Eastern Indian Ocean off Java. Climate, 9(2):1-29.
Miura, T., Smith, C. Z., & Yoshioka, H. (2021). Validation and analysis of Terra and Aqua MODIS, and SNPP VIIRS vegetation indices under zero vegetation conditions: A case study using Railroad Valley Playa. Remote Sensing of Environment, 257(6):1-19.
Mohebzadeh, H., Yeom, J., & Lee, T. (2020). Spatial Downscaling of MODIS Chlorophyll-a with Genetic Programming in South Korea. Remote Sensing, 12(9):1-19.
Mukhtar, M. K., Supriatna, & Manessa, M. D. M. (2021). The validation of water quality parameter algorithm using Landsat 8 and Sentinel-2 image in Palabuhanratu Bay. IOP Conference Series: Earth and Environmental Science, 846(2):1-10.
Muskananfola, M. R., Jumsar, & Wirasatriya, A. (2021). Spatio-temporal distribution of chlorophyll-a concentration, sea surface temperature and wind speed using aqua-modis satellite imagery over the Savu Sea, Indonesia. Remote Sensing Applications: Society and Environment, 22(2):1-18.
Nastiti A. S., Mujiyanto, & Krismono. (2020). The abundance of Chaetoceros spp. and its relation to the water quality parameters in the Muara Gembong Waters, West Jawa. Jurnal Biologi Indonesia, 16(1):39-46.
Niu, L., Luo, X., Hu, S., Liu, F., Cai, H., Ren, L., Ou, S., Zeng, D., & Yang, Q. (2020). Impact of anthropogenic forcing on the environmental controls of phytoplankton dynamics between 1974 and 2017 in the Pearl River estuary, China. Ecological Indicators, 116(9):1-19.
Paparazzo, F. E., Pierattini Martinez, R., Fabro, E., Gonçalves, R. J., Crespi-Abril, A. C., Soria, G. R., Barbieri, E. A., & Almandoz, G. O. (2021). Relevance of sporadic upwelling events on primary productivity: The key role of nitrogen in a gulf of SW Atlantic Ocean. Estuarine, Coastal and Shelf Science, 249(2):1-16.
Pitcher G C, Jacinto G S. (2020). Ocean deoxygenation links to harmful algal blooms. In: Laffoley eds.Ocean deoxygenation: Everyone's problem. International Union for Conservation of Nature, Gland, Switzerland. p.153-170. Gland, Switzerland: International Union for Conservation of Nature (IUCN).
Poddar, S., Chacko, N., & Swain, D. (2019). Estimation of Chlorophyll-a in Northern Coastal Bay of Bengal Using Landsat-8 OLI and Sentinel-2 MSI Sensors. Frontiers in Marine Science, 6(598):1-11.
Ramadhiani, A. F., & Suharyanto. (2021). Analysis of river water quality and pollution control strategies in the upper Citarum River. IOP Conference Series: Earth and Environmental Science, 623(2):1-8.
Rodrigues, S. M., Almeida, C. M. R., Silva, D., Cunha, J., Antunes, C., Freitas, V., & Ramos, S. (2019). Microplastic contamination in an urban estuary: Abundance and distribution of microplastics and fish larvae in the Douro estuary. Science of The Total Environment, 659(16):1071–1081.
Roy, D. P., Kovalskyy, V., Zhang, H. K., Vermote, E. F., Yan, L., Kumar, S. S., & Egorov, A. (2016). Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote Sensing of Environment, 185(14):57-70.
Saulquin, B., Fablet, R., Mangin, A., Mercier, G., Antoine, D., & Fanton d'Andon, O. (2013). Detection of linear trends in multisensor time series in the presence of autocorrelated noise: Application to the chlorophyll"a SeaWiFS and MERIS data sets and extrapolation to the incoming Sentinel 3"OLCI mission. Journal of Geophysical Research: Oceans, 118(8):3752–3763.
Saulquin, B., Gohin, F., & Fanton d'Andon, O. (2019). Interpolated fields of satellite-derived multi-algorithm chlorophyll-a estimates at global and European scales in the frame of the European Copernicus-Marine Environment Monitoring Service. Journal of Operational Oceanography, 12(1):47–57.
Seegers, B. N., Stumpf, R. P., Schaeffer, B. A., Loftin, K. A., & Werdell, P. J. (2018). Performance metrics for the assessment of satellite data products: an ocean color case study. Optics Express, 26(6):7404-7422.
Sembiring E, Fareza A A, Suendo V et al. 2020. The Presence of Microplastics in Water, Sediment, and Milkfish (Chanos chanos) at the Downstream Area of Citarum River, Indonesia. Water, Air, and Soil Pollution, 231(7):1-14.
Ser-Giacomi, E., Zinger, L., Malviya, S., De Vargas, C., Karsenti, E., Bowler, C., & De Monte, S. (2018). Ubiquitous abundance distribution of non-dominant plankton across the global ocean. Nature Ecology & Evolution, 2(8):1243–1249.
Setyohadi, D., Zakiyah, U., Sambah, A. B., & Wijaya, A. (2021). Upwelling Impact on Sardinella lemuru during the Indian Ocean Dipole in the Bali Strait, Indonesia. Fishes, 6(8):1-9.
Sholeh, M., Pranoto, P., Budiastuti, S., & Sutarno, S. (2018). Analysis of Citarum River pollution indicator using chemical, physical, and bacteriological methods. AIP Conference Proceedings, 2049(1):1-9.
Tangke, U., Laisouw, R., Umagap, W. A., & Darmawaty. (2021). Variability of chlorophyll-a concentration relation to fish catch of Indian mackerel in West Halmahera waters. IOP Conference Series: Earth and Environmental Science, 777(2):1-9.
Tangke, U., & Senen, B. (2020). Distribution of sea surface temperature and chlorophyll-a concentration its correlation with small pelagic fish catch in Dodinga Bay. IOP Conference Series: Earth and Environmental Science, 584(2):1-9.
Tweddle, J. F., Gubbins, M., & Scott, B. E. (2018). Should phytoplankton be a key consideration for marine management? Marine Policy, 97(11):1–9.
Van Meerssche, E., & Pinckney, J. L. (2019). Nutrient Loading Impacts on Estuarine Phytoplankton Size and Community Composition: Community-Based Indicators of Eutrophication. Estuaries and Coasts, 42(2):504–512.
Van Trijp, D. (2021). Fresh Fish: Observation up Close in Late Seventeenth-Century England. Notes and Records: The Royal Society Journal of the History of Science, 75(3):311–332.
Vanhellemont, Q., & Ruddick, K. (2021). Atmospheric correction of Sentinel-3/OLCI data for mapping of suspended particulate matter and chlorophyll-a concentration in Belgian turbid coastal waters. Remote Sensing of Environment, 256(5):1-18.
Wang, Yanfeng, Yao, L., Chen, P., Yu, J., & Wu, Q. (2020). Environmental Influence on the Spatiotemporal Variability of Fishing Grounds in the Beibu Gulf, South China Sea. Journal of Marine Science and Engineering, 8(957):1-12.
Wang, Yueqi, Tian, X., & Gao, Z. (2021). Evolution of satellite derived chlorophyll-a trends in the Bohai and Yellow Seas during 2002–2018: Comparison between linear and nonlinear trends. Estuarine, Coastal and Shelf Science, 259(12):1-15.
Welliken, M. A., Melmambessy, E. H. ., Merly, S. L., Pangaribuan, R. D., Lantang, B., Hutabarat, J., & Wirasatriya, A. (2018). Variability Chlorophyll-a And Sea Surface Temperature As The Fishing Ground Basis Of Mackerel Fish In The Arafura Sea. E3S Web of Conferences, 73(1):1-5.
Wirasatriya, A., Setiawan, R. Y., & Subardjo, P. (2017). The Effect of ENSO on the Variability of Chlorophyll-a and Sea Surface Temperature in the Maluku Sea. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(12):5513–5518.
Xu, T., Wei, Z., Li, S., Susanto, R. D., Radiarta, N., Yuan, C., Setiawan, A., Kuswardani, A., Agustiadi, T., & Trenggono, M. (2021). Satellite-Observed Multi-Scale Variability of Sea Surface Chlorophyll-a Concentration along the South Coast of the Sumatra-Java Islands. Remote Sensing, 13(2817):1-19.
Yin, Z., Li, J., Huang, J., Wang, S., Zhang, F., & Zhang, B. (2021). Steady increase in water clarity in Jiaozhou Bay in the Yellow Sea from 2000 to 2018: Observations from MODIS. Journal of Oceanology and Limnology, 39(3):800–813.
Yu, Y., Wang, P., Wang, C., & Wang, X. (2018). Optimal reservoir operation using multi-objective evolutionary algorithms for potential estuarine eutrophication control. Journal of Environmental Management, 223(19):758–770.