Date Log
Copyright (c) 2024 Jurnal Ilmiah Perikanan dan Kelautan
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
1. Copyright of the article is transferred to the journal, by the knowledge of the author, whilst the moral right of the publication belongs to the author.
2. The legal formal aspect of journal publication accessibility refers to Creative Commons Atribusi-Non Commercial-Share alike (CC BY-NC-SA), (https://creativecommons.org/licenses/by-nc-sa/4.0/)
3. The articles published in the journal are open access and can be used for non-commercial purposes. Other than the aims mentioned above, the editorial board is not responsible for copyright violation
The manuscript authentic and copyright statement submission can be downloaded ON THIS FORM.
Effect of Media Formulations on Chlorophyll, Antioxidant Activity of Chlorella vulgaris and Its Potential as a Health Supplement
Corresponding Author(s) : Dian Iriani
Jurnal Ilmiah Perikanan dan Kelautan, 2024: JIPK VOLUME 16 ISSUE 2 YEAR 2024 (NOVEMBER 2024, ISSUE IN PROGRESS)
Abstract
Graphical Abstract
Highlight Research
- Chlorella indigenous from waters of Rokan River estuary was identified.
- The using of 4 chemicals KNO3, KH2PO4, MgSO4.7H2O and FeSO4.7H2O can reduce production cost and obtain an optimal medium formulation.
- The manipulated media was obtained can replace the commercial media of Chlorella
- Chlorella vulgaris contains high antioxidant activity.
Abstract
Chlorella is a microalga that is rich in chlorophyll and antioxidants so it has the potential to be a functional food or health supplement, however, the quality of Chlorella depends on the nutrient composition in cultivation. The research aimed to evaluate the effect of different formulations in Chlorella cultivation on the content of chlorophyll a, chlorophyll b, total chlorophyll, carotenoids and antioxidants. Furthermore, to analyze the profile of amino acids, fatty acids and secondary metabolism in the best formulation. The experimental design used was a non-factorial Completely Randomized Design (CRD) with 5 formulations in Chlorella cultivation: control, F-1, F-2, F-3, and F-4 by manipulating the use of 4 chemicals: KNO3, KH2PO4, MgSO4.7H2O and FeSO4.7H2O. The data obtained were analyzed descriptively and analysis of variance (ANOVA). The results showed that F-1 treatment with the use of 1.50 KNO3, 1.25 KH2PO4, 1 MgSO4.7H2O and 0.0498 FeSO4.7H2O (g L-l) was the best treatment with the content of chlorophyll a 38.19 µg/mL, chlorophyll b 41.45 µg/mL, total chlorophyll 79.65 µg/mL, carotenoids 0.08 µg/mL, and antioxidants activity 49.52 mg/L (strong) which is the same as the control treatment. In addition, Chlorella cultivated with the F-1 formula has 17 amino acid profiles with a total of 301.52 mg/g, 7 fatty acids 84.32 mg/g, and secondary metabolites, namely alkaloid 109.471 mg/L, flavonoid 82.111 mg/L, saponin 1342.222 mg/L, tannin 411,591 mg/L, and phenolic 151.889 mg/L. Therefore, the F-1 formulation can be developed for large-scale Chlorella cultivation and applied as a health supplement.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Ahmad, S., Ali, M. D., Khardali, A., Ali, M. S., Khan, G., & Alam, N. (2024). Incredible use of omega-3 fatty acids: A review on current use and future prospective. Journal of Young Pharmacists,16(2):177-86.
- Ajala, S. O., & Alexander, M. L. (2020). Assessment of Chlorella vulgaris, Scenedesmus obliquus, and Oocystis minuta for removal of sulfate, nitrate, and phosphate in wastewater. International Journal of Energy Environmental Engineering, 11(3):311-326.
- Akter, T., Hasan, M. M., Das, M., Mondal, M. N., Hossain, S., Munir, M. B., & Hossain, M. A. (2022). Utilisation of fermented wheat bran extract medium as a potential low-cost culture medium for Chlorella ellipsoidea. Borneo Journal of Resource Science and Technology, 12(2):63-73.
- Amelia, R., Akmal, W. R., & Suyono, E. A. (2023). Enhancement of astaxanthin content in mixed culture of Dunaliella sp. and Azospirillum sp. under light intensity treatment. Jurnal Ilmiah Perikanan Dan Kelautan, 15(2):430-437.
- Andersen, R. A. (2005). Algal culturing techniques. London: Elsevier Academic Press.
- AOAC. Association of Official Analytical Chemist. (2005). Official methods of analysis of AOAC International. Washington D.C. USA: AOAC International.
- Arsad, S., Sari, L. A., Suherman, S. P., Cahyani, D., Nadhira, T., Yulinda, E. N., Musa, M., Lusiana, E. D., & Prasetiya, F. S. (2020). Utilization of tofu wastewater as Chlorella Pyrenoidosa growth medium. Journal AACL Bioflux, 13(5):2878-2885.
- Barkia, I., Saari, N., & Manning, S. R. (2019). Microalgae for high-value products towards human health and nutrition. Marine Drugs, 17(5):1-29.
- Bito, T., Okumura, E., Fujishima, M., & Watanabe, F. (2020). Potential of Chlorella as a dietary supplement to promote human health. Nutrients, 12(9):1-22.
- Brown, K. R., Carter, Jr. W., & Lombardi, G. E. (1993). Recombinant erythropoietin overdose. The American Journal of Emergency Medicine, 11(6):619-621.
- Carletti, M., Barbera, E., Filippini, F., & Sforza, E. (2024). Effect of ammonium/nitrate ratio on microalgae continuous cultures: Species-specificity of nutrient uptake and modelling perspectives. Journal of Water Process Engineering, 58(2):1-11.
- Chaudhary, P., Janmeda, P., Docea, A. O., Yeskaliyeva, B., Abdull Razis, A. F., Modu, B., Calina, D., & Sharifi-Rad, J. (2023). Oxidative stress, free radicals and antioxidants: Potential crosstalk in the pathophysiology of human diseases. Frontiers in Chemistry, 11(1):1-24.
- Chaudhuri, D., Ghate, N. B., Deb, S., Panja, S., Sarkar, R., Rout, J., & Mandal, N. (2014). Assessment of the phytochemical constituents and antioxidant activity of a bloom forming microalgae Euglena tuba. Biological Research, 47(24):1-11.
- Cheng, H. Y., Shao, Z. H., Li, S. Y., Lin, X., Da, H. R., Xu, M. Y., & Wu, Z. L. (2022). Research on the manipulation of iron ions and alkalis in Chlorella Vulgaris Culture. South African Journal of Botany, 151(2):583-590.
- Chewapanich, W., Charoenrak, P., Intanoo, W., & Chamswarng, C. (2021). Efficacy of Trichoderma asperellum CB-Pin-01 and potassium dihydrogen phosphate to enhance growth and yield and reduce Pythium root rot of hydroponically grown lettuce. Agriculture and Natural Resources, 55(4):601-610.
- Coban, A., Şimşek, G. K., & Çetin, A. K. (2021). Effect of nitrogen source on growth and protein and lipid amounts of a freshwater microalga Scenedesmus acutus. Turkish Journal of Science and Technology, 16(2):215-220.
- Coulombier, N., Jauffrais, T., & Lebouvier, N., (2021). Antioxidant compounds from microalgae: A review. Marine Drugs, 19(10):1-30.
- Darwish, R., Gedi, M. A., Akepach, P., Assaye, H., Zaky, A. S., & Gray, D. A. (2020). Chlamydomonas reinhardtii is a potential food supplement with the capacity to outperform Chlorella and Spirulina. Applied Sciences, 10(19):1-17.
- De Almeida, A. J. P. O., de Oliveira, J. C. P. L., da Silva Pontes, L. V., de Souza Júnior, J. F., Gonçalves, T. A. F., Dantas, S. H., de Almeida Feitosa, M. S., Silva, A. O., & de Medeiros, I. A. (2022). ROS: Basic concepts, sources, cellular signaling, and its implications in aging pathways. Oxidative Medicine and Cellular Longevity, 2022(1225578):1-23.
- De Souza, M. P, Hoeltz, M., Brittes Benitez, L., Machado, ÊL., & de Souza Schneider, R. D. C. (2019). Microalgae and clean technologies: A review. Clean–Soil, Air, Water, 47(11):1-18.
- Dinev, T., Tzanova, M., Velichkova, K., Dermendzhieva, D., & Beev, G. (2021). Antifungal and antioxidant potential of methanolic extracts from Acorus calamus L., Chlorella vulgaris Beijerinck, Lemna minuta Kunth and Scenedesmus dimorphus (Turpin) Kützing. Applied Sciences, 11(11):1-13.
- Dubey, K. K., Kumar, A., Baldia, A., Rajput, D., Kateriya, S., Singh, R., & Mishra, Y. K. (2023). Biomanufacturing of glycosylated antibodies: challenges, solutions, and future prospects. Biotechnology Advances, 69(19):1-12.
- Einali, A., Shariati, M, Sato, F., & Endo, T. (2013). Cyclic electron transport around photosystem I and its relationship to non-photochemical quenching in the unicellular green alga Dunaliella Salina under nitrogen deficiency. Journal of Plant Research, 126(1):179-186.
- Elbasuney, S., El-Sayyad, G. S., Attia, M. S., & Abdelaziz, A. M. (2022). Ferric oxide colloid: Towards green nano-fertilizer for tomato plant with enhanced vegetative growth and immune response against fusarium wilt disease. Journal of Inorganic and Organometallic Polymers and Materials, 32(11):4270-4283.
- El-Chaghaby, G., Rashad, S., Abdel-Kader, S. F., A Rawash, E. S., & Abdul Moneem, M. (2019). Assessment of phytochemical components, proximate composition and antioxidant properties of Scenedesmus obliquus, Chlorella vulgaris and Spirulina platensis algae extracts. Egyptian Journal of Aquatic Biology and Fisheries, 23(4):521-526.
- El-Sheekh, M., Abu-Faddan, M., Abo-Shady, A., Nassar, M. Z. A., & Labib, W. (2020). Molecular identification, biomass, and biochemical composition of the marine chlorophyte Chlorella Sp. MF1 isolated from Suez Bay. Journal of Genetic Engineering and Biotechnology, 18(1):1-10.
- Erfianti, T., Daryono, B. S., Budiman, A., & Suyono, E. A. (2023). Growth and metabolite enhancement of acidophile Euglena sp. isolated from Indonesia under different photoperiod cycles. Jurnal Ilmiah Perikanan dan Kelautan, 16(1):15-30.
- Farhat, N., Elkhouni, A., Zorrig, W., Smaoui, A., Abdelly, C., & Rabhi, M. (2016). Effects of magnesium deficiency on photosynthesis and carbohydrate partitioning. Acta Physiologiae Plantarum, 38(6):1-10.
- Hanieh, B., Zahra, D., Elyas N. E., Enas, R. A., Elyas, N. E., Enas, R. A., Abbas, F. A., Ali, K. K., Mehdi, B., Golnaz, R., Alireza, M., Pegah, R., & Naseh, P. (2023). The effects of Chlorella vulgaris on cardiovascular risk factors: A comprehensive review on putative molecular mechanisms. Biomedicine & Pharmacotherapy, 162(6):1-10.
- Hazra, B., Biswas, S., & Mandal, N. (2008). Antioxidant and free radical scavenging activity of Spondias pinnata. BMC Complementary and Alternative Medicine, 8(1):1-10.
- Indrayani, I., Ramadani, N. Z., Mawaddah, N., Kaseng, E. S., Sukainah, A., Putra, R. P., Hambali, A., Fadilah, R., Nurmila, & Ardiansyah. (2023). Influence of different culture media and light intensity on the growth and biomass productivity of a newly isolated Chlorella sp. UNM-IND1 from Waepella hot spring, South Sulawesi, Indonesia. Journal AACL Bioflux, 16(3):1508-1518.
- Iriani, D., Hasan, B., Putra, H. S., & Ghazali, T. M. (2021). Optimization of culture conditions on growth of Chlorella sp. newly isolated from Bagansiapiapi Waters Indonesia. IOP Conference Series: Earth and Environmental Science, 934(012097):1-8.
- Iriani, D., Hasan, B., Sari, N. I., & Alfionita, V. (2023). Preparation of face mask from microalga Chlorella sp. and its potential as antiaging. Pharmacognosy Journal, 15(1):112-118.
- Iriani, D., Orasa, S., & Nittaya, C. (2011). Effect of iron concentration on growth, protein content and total phenolic content of Chlorella sp. cultured in basal medium. Sains Malaysiana, 40(4):353-58.
- Iriani, D., Suriyaphan, O., Chaiyanate, N., & Hasan, B. (2017). Culturing of Chlorella sp. with different of Iron (Fe3+) concentration in bold’s basal medium for healthy and nutritious cookies. Applied Science and Technology, 1(1):218-226.
- Jerez-Martel, I., García-Poza, S., Rodríguez-Martel, G., Rico, M., Afonso-Olivares, C., & Gómez-Pinchetti, J. L. (2017). Phenolic profile and antioxidant activity of crude extracts from microalgae and Cyanobacteria strains. Journal of Food Quality, 2017(1):1-8.
- Kent, M., Welladsen, H. M., Mangott, A., & Li, Y. (2015). Nutritional evaluation of Australian microalgae as potential human health supplements. Plos One, 10(2):1-14.
- Khan, A. N. M., Habib, M. A. B., & Miah, M. I. (2020). Effects of inorganic media enriched with sodium acetate on the growth performance and nutrient content in the microalga Chlorella vulgaris. Journal of Fisheries & Environment, 44(3):32-44.
- Kim, G., Mujtaba, G., & Lee, K. (2016). Effects of nitrogen sources on cell growth and biochemical composition of marine chlorophyte Tetraselmis sp. for lipid production. Algae, 31(3):257-266.
- Kim, H. S., Park, W., Lee, B., Seon, G., I. Suh, W., Moon, M., & Chang, Y. K. (2019). Optimization of heterotrophic cultivation of Chlorella sp. HS2 using screening, statistical assessment, and validation. Journal Scientific Reports, 9(1):1-13.
- Kurutas, E. B. (2016). The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: Current state. Nutrition Journal, 15(1):1-22.
- Li, X., Li, W., Zhai, J., Wei, H., & Wang, Q. (2019). Effect of ammonium nitrogen on microalgal growth, biochemical composition and photosynthetic performance in Mixotrophic cultivation. Bioresource Technology, 273(3):368-376.
- Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods in Enzymology, 148(1):350-382.
- Maisarah, M., Saefumillah, A., & Ambarsari, H. (2020). Study of Microalgae (Scenedesmus sp.) utilization as phosphate bioremediator (PO43−) in domestic wastewater medium. IOP Conference Series: Materials Science and Engineering, 763(1):1-9.
- Mandal, P., Babu, S. S., & Mandal, N. C. (2005). Antimicrobial activity of aponins from Acacia auriculiformis. Fitoterapia, 76(5):462-465.
- Matos, A. P., Ferreira, W. B., Morioka, L. R. I., Moecke, E. H. S., França, K. B., & Sant’Anna, E. S. (2018). Cultivation of Chlorella vulgaris in medium supplemented with desalination concentrate grown in a pilot-scale open raceway. Brazilian Journal of Chemical Engineering, 35(18):1183-1192.
- Mavrommatis, A., Tsiplakou, E., Zerva, A., Pantiora, P. D., Georgakis, N. D., Tsintzou, G. P, Madesis, P., Labrou, N. E. (2023). Microalgae as a sustainable source of antioxidants in animal nutrition, health and livestock development. Antioxidants, 12(10):1-21.
- Mirzaie, M. M. A., Kalbasi, M., Mousavi, S. M., & Ghobadian, B. (2016). Investigation of mixotrophic, heterotrophic, and autotrophic growth of Chlorella vulgaris under agricultural waste medium. Preparative Biochemistry and Biotechnology, 46(2):150-156.
- Molyneux, P. (2004). The use of the stable free radical Diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin Journal of Science Technology, 26(2):211-219.
- Muhammad. I., Yang, L., Ahmad, S., Farooq, S., Al-Ghamdi, A. A., & Khan, A., Zhou, X. B. (2022). Nitrogen fertilizer modulates plant growth, chlorophyll pigments and enzymatic activities under different irrigation regimes. Agronomy, 12(4):1-20.
- Nafiu, M. O., & Ashafa, A. O. T. (2017). Antioxidant and inhibitory effects of saponin extracts from Dianthus basuticus Burtt Davy on key enzymes implicated in type 2 diabetes in vitro. Pharmacognosy Magazine, 13(52):576-582.
- Ngo, D. H., Wijesekara, I., Vo, T. S., Van Ta, Q., & Kim, S. K. (2011). Marine food-derived functional ingredients as potential antioxidants in the food industry: An overview. Food Research International, 44(2):523-529.
- Olasehinde, T. A., Olaniran, A. O., & Okoh, A. I. (2017). Therapeutic potentials of microalgae in the treatment of Alzheimer’s disease. Molecules, 22(3):1-18.
- Pandithurai, M., Murugesan, S., Bhuvaneswari, S., & Thennarasan, S. (2015). In vitro α-amylase and α-glucosidase inhibition activity of methanolic extract of marine brown alga Spatoglossum asperum. International Journal of Advances in Pharmaceutics, 4(5):83-87.
- Peng, L., Zhang, Z., Lan, C. Q., Basak, A., Bond, N., Ding, X., & Du, J. (2017). Alleviation of oxygen stress on Neochloris Oleoabundans: Effects of bicarbonate and pH. Journal of Applied Phycology, 29(1):143-152.
- Polterait, O. (1997). Antioxidants and free radical scavengers of natural origin. Current organic chemistry, 1(4):415-440.
- Prabakaran, G., Moovendhan, M., Arumugam, A., Matharasi, A., Dineshkumar, R., & Sampathkumar, P. (2018). Quantitative analysis of phytochemical profile in marine microalgae Chlorella vulgaris. International Journal of Pharmacy and Biological Science, 8(2):562-565.
- Pradhan, B., Baral, S., Patra, S., Behera, C., Nayak, R., MubarakAli, D., & Jena, M. (2020). Delineation of gamma irradiation (60oC) induced oxidative stress by decrypting antioxidants and biochemical responses of microalga, Chlorella sp. Biocatalysis and Agricultural Biotechnology, 25(3):1-11.
- Putri, T. W., Nursida, N. F., & Raya, I. (2021). Antioxidant activity of Chlorella vulgaris used as an antioxidant cream. In Journal of Physics: Conference Series, 1899(012030):1-5.
- Rakhmadumila, D. H., & Muntalif, B. S. (2020). Artificial produced water as a medium to grow Chlorella sp. for biodiesel production. Journal E3S Web of Conferences, 148(8):1-8.
- Rasala, B. A., & Mayfield, S. P. (2015). Photosynthetic biomanufacturing in green algae; production of recombinant proteins for industrial, nutritional, and medical uses. Photosynthesis Research, 123(3):227-239.
- Raven, J. A., & Giordano, M. (2016). Combined nitrogen. In:Borowitzka, M.,Beardall, J., & Raven, J. (Eds.), The physiology of microalgae. Developments in applied phycology, vol 6 (pp. 143-154). Switzerland: Springer.
- Ridlo, A., Pringgenies, D., Perangin-angin, R. A. B., & Ariyanto, D. (2023). Phytochemicals and antioxidant activity of microalgae Dunaliella salina and Botryococcus braunii. Jurnal Ilmiah Perikanan dan Kelautan, 15(2):438-447.
- Rowan, K. S. (1989). Photosynthetic pigments of algae. Cambridge: Cambridge University Press.
- Roy, U. K., Wagne, J., & Radu, T. (2023). Production of metabolites in microalgae under alkali halophilic growth medium using a dissolved inorganic carbon source. Waste and Biomass Valorization, 14(1):3339-3354.
- Sadewo, R. P., Hidhayati, N., Ambarsari, L., & Anam, K. (2022). CO2 sequestration using sodium hydroxide and its utilization for Chlorella sorokiniana biomass production. Journal of Biology & Biology Education, 14(3):391-399.
- Salbitani, G., & Carfagna, S. (2021). Ammonium utilization in microalgae: A sustainable method for wastewater treatment. Sustainability, 13(2):1-17.
- Sassi, A. S., Aydi, S., Kolsi, R. B. A., Haddeji, N., Rahmani, R., Ktari, N., & Bouajila, J. (2020). CO2 enrichment: Enhancing antioxidant, antibacterial and anticancer activities in Arthrospira platensis. Food Bioscience, 35(3):1-8.
- Septrianzu, J. (2024). Design and construction of web-based property sales value using linear regression. Jurnal Sains dan Teknologi, 4(1):27-45.
- Sharifi-Rad, J., Rapposell, S., Sestito, S., Herrera-Bravo, J., Arancibia-Diaz, A., & Salaza, L. A. (2022). Multi-target mechanisms of phytochemicals in Alzheimer’s disease: Effects on oxidative stress, neuroinflammation and protein aggregation. Journal of Personalized Medicine, 12(9):1-25.
- Shekarabi, S. P. H., Mehrgan, M. S., Razi, N., & Sabzi, S. (2019). Biochemical composition and fatty acid profile of the marine microalga Isochrysis galbana dried with different methods. The Journal of Microbiology, Biotechnology and Food Sciences, 9(3):521-524.
- Siahbalaei, R., Kavoosi, G., & Noroozi, M. (2021). Protein nutritional quality, amino acid profile, anti-amylase and anti-glucosidase properties of microalgae: Inhibition and mechanisms of action through in vitro and in silico studies. LWT, 150(17):1-11.
- Srinivasan, R., Mageswari, A., Subramanian, P., Suganthi, C., Chaitanyakumar, A., Aswini, V., & Gothandam, K. M. (2018). Bicarbonate supplementation enhances growth and biochemical composition of Dunaliella salina V-101 by reducing oxidative stress induced during macronutrient deficit conditions. Scientific Reports, 8(1):1-14.
- Stansell, G. R., Gray, V. M., & Sym, S. D. (2012). Microalgal fatty acid composition: Implications for biodiesel quality. Journal of Applied Phycology, 24(3):791-801.
- Thongpitak, J., Pekkoh, J., & Pumas, C. (2018). simple medium formulation for manganese remediation by green microalga Pediastrum Duplex AARLG060. Chiang Mai of Journal Science, 45(3):1247-1256.
- Tokuşoglu, Ö., & Üunal, M. K. (2003). Biomass nutrient profiles of three microalgae: Spirulina platensis, Chlorella vulgaris, and Isochrisis galbana. Journal of Food Science, 68(4):1144-1148.
- Valenzuela, B., Tapia, O., Gonzalez, E. M., & Valenzuela, A. (2011). Omega-3 fatty acids (EPA and DHA) and its application in diverse clinical situations. Revista Chilena de Nutrición, 38(3):356-367.
- Vignaud, J., Loiseau, C., Hérault, J., Mayer, C., Côme, M., Martin, I., & Ulmann, L. (2023). Microalgae produce antioxidant molecules with potential preventive effects on mitochondrial functions and skeletal muscular oxidative stress. Antioxidants, 12(5):1-9.
- Wang, Q., Shan, C., Zhang, P., Zhao, W., Zhu, G., Sun, Y., & Rui, Y. (2023). The combination of nanotechnology and potassium: Applications in agriculture. Environmental Science and Pollution Research, 31(2):1-17.
- Wang, Y., Tibbetts, S. M., & McGinn, P. J. (2021). Microalgae as sources of high-quality protein for human food and protein supplements. Foods, 10(12):1-10.
- Widowati, I., Zainuri. M., Kusumaningrum, H. P., & Hardivillier, Y. (2021). Antibacterial activity of microalgae Dunaliella salina, Tetraselmis chuii and Isochrysis galbana against aquatic pathogens. Ilmu Kelautan: Indonesian Journal of Marine Sciences, 26(4):265-270.
- Wong, Y. K., Ho, Y. H., Ho, K. C., Leung, H. M., & Yung, K. K (2017). Maximization of cell growth and lipid production of freshwater microalga Chlorella vulgaris by enrichment technique for biodiesel production. Environmental Science and Pollution Research, 24(10):9089-9101.
- Wu, K., Fang, Y., Hong, B., Cai, Y., Xie, H., Wang, Y., & Zhang, Q. (2022). Enhancement of carbon conversion and value-added compound production in heterotrophic Chlorella vulgaris using Sweet sorghum extract. Foods, 11(17):1-12.
- Yu, B. S., Sung, Y. J., Hong, M. E., & Sim, S. J. (2021). Improvement of photoautotrophic algal biomass production after interrupted CO2 Supply by Urea and KH2PO4 injection. Energies, 14(3):1-14.
- Yun, H., Kim, Y., & Yoon, H. (2021). Effect of different cultivation modes (photoautotrophic, mixotrophic, and heterotrophic) on the growth of Chlorella sp. and biocompositions. Journal Frontiers in Bioengineering and Biotechnology, 9(1):1-14.
- Yuniarti, A., Fakhri, M., Arifin, N. B., & Hariati, A. M. (2023). Effects of various nitrogen sources on the growth and biochemical composition of Chlorella sp. Jurnal Ilmiah Perikanan dan Kelautan, 15(2):448-457.
References
Ahmad, S., Ali, M. D., Khardali, A., Ali, M. S., Khan, G., & Alam, N. (2024). Incredible use of omega-3 fatty acids: A review on current use and future prospective. Journal of Young Pharmacists,16(2):177-86.
Ajala, S. O., & Alexander, M. L. (2020). Assessment of Chlorella vulgaris, Scenedesmus obliquus, and Oocystis minuta for removal of sulfate, nitrate, and phosphate in wastewater. International Journal of Energy Environmental Engineering, 11(3):311-326.
Akter, T., Hasan, M. M., Das, M., Mondal, M. N., Hossain, S., Munir, M. B., & Hossain, M. A. (2022). Utilisation of fermented wheat bran extract medium as a potential low-cost culture medium for Chlorella ellipsoidea. Borneo Journal of Resource Science and Technology, 12(2):63-73.
Amelia, R., Akmal, W. R., & Suyono, E. A. (2023). Enhancement of astaxanthin content in mixed culture of Dunaliella sp. and Azospirillum sp. under light intensity treatment. Jurnal Ilmiah Perikanan Dan Kelautan, 15(2):430-437.
Andersen, R. A. (2005). Algal culturing techniques. London: Elsevier Academic Press.
AOAC. Association of Official Analytical Chemist. (2005). Official methods of analysis of AOAC International. Washington D.C. USA: AOAC International.
Arsad, S., Sari, L. A., Suherman, S. P., Cahyani, D., Nadhira, T., Yulinda, E. N., Musa, M., Lusiana, E. D., & Prasetiya, F. S. (2020). Utilization of tofu wastewater as Chlorella Pyrenoidosa growth medium. Journal AACL Bioflux, 13(5):2878-2885.
Barkia, I., Saari, N., & Manning, S. R. (2019). Microalgae for high-value products towards human health and nutrition. Marine Drugs, 17(5):1-29.
Bito, T., Okumura, E., Fujishima, M., & Watanabe, F. (2020). Potential of Chlorella as a dietary supplement to promote human health. Nutrients, 12(9):1-22.
Brown, K. R., Carter, Jr. W., & Lombardi, G. E. (1993). Recombinant erythropoietin overdose. The American Journal of Emergency Medicine, 11(6):619-621.
Carletti, M., Barbera, E., Filippini, F., & Sforza, E. (2024). Effect of ammonium/nitrate ratio on microalgae continuous cultures: Species-specificity of nutrient uptake and modelling perspectives. Journal of Water Process Engineering, 58(2):1-11.
Chaudhary, P., Janmeda, P., Docea, A. O., Yeskaliyeva, B., Abdull Razis, A. F., Modu, B., Calina, D., & Sharifi-Rad, J. (2023). Oxidative stress, free radicals and antioxidants: Potential crosstalk in the pathophysiology of human diseases. Frontiers in Chemistry, 11(1):1-24.
Chaudhuri, D., Ghate, N. B., Deb, S., Panja, S., Sarkar, R., Rout, J., & Mandal, N. (2014). Assessment of the phytochemical constituents and antioxidant activity of a bloom forming microalgae Euglena tuba. Biological Research, 47(24):1-11.
Cheng, H. Y., Shao, Z. H., Li, S. Y., Lin, X., Da, H. R., Xu, M. Y., & Wu, Z. L. (2022). Research on the manipulation of iron ions and alkalis in Chlorella Vulgaris Culture. South African Journal of Botany, 151(2):583-590.
Chewapanich, W., Charoenrak, P., Intanoo, W., & Chamswarng, C. (2021). Efficacy of Trichoderma asperellum CB-Pin-01 and potassium dihydrogen phosphate to enhance growth and yield and reduce Pythium root rot of hydroponically grown lettuce. Agriculture and Natural Resources, 55(4):601-610.
Coban, A., Şimşek, G. K., & Çetin, A. K. (2021). Effect of nitrogen source on growth and protein and lipid amounts of a freshwater microalga Scenedesmus acutus. Turkish Journal of Science and Technology, 16(2):215-220.
Coulombier, N., Jauffrais, T., & Lebouvier, N., (2021). Antioxidant compounds from microalgae: A review. Marine Drugs, 19(10):1-30.
Darwish, R., Gedi, M. A., Akepach, P., Assaye, H., Zaky, A. S., & Gray, D. A. (2020). Chlamydomonas reinhardtii is a potential food supplement with the capacity to outperform Chlorella and Spirulina. Applied Sciences, 10(19):1-17.
De Almeida, A. J. P. O., de Oliveira, J. C. P. L., da Silva Pontes, L. V., de Souza Júnior, J. F., Gonçalves, T. A. F., Dantas, S. H., de Almeida Feitosa, M. S., Silva, A. O., & de Medeiros, I. A. (2022). ROS: Basic concepts, sources, cellular signaling, and its implications in aging pathways. Oxidative Medicine and Cellular Longevity, 2022(1225578):1-23.
De Souza, M. P, Hoeltz, M., Brittes Benitez, L., Machado, ÊL., & de Souza Schneider, R. D. C. (2019). Microalgae and clean technologies: A review. Clean–Soil, Air, Water, 47(11):1-18.
Dinev, T., Tzanova, M., Velichkova, K., Dermendzhieva, D., & Beev, G. (2021). Antifungal and antioxidant potential of methanolic extracts from Acorus calamus L., Chlorella vulgaris Beijerinck, Lemna minuta Kunth and Scenedesmus dimorphus (Turpin) Kützing. Applied Sciences, 11(11):1-13.
Dubey, K. K., Kumar, A., Baldia, A., Rajput, D., Kateriya, S., Singh, R., & Mishra, Y. K. (2023). Biomanufacturing of glycosylated antibodies: challenges, solutions, and future prospects. Biotechnology Advances, 69(19):1-12.
Einali, A., Shariati, M, Sato, F., & Endo, T. (2013). Cyclic electron transport around photosystem I and its relationship to non-photochemical quenching in the unicellular green alga Dunaliella Salina under nitrogen deficiency. Journal of Plant Research, 126(1):179-186.
Elbasuney, S., El-Sayyad, G. S., Attia, M. S., & Abdelaziz, A. M. (2022). Ferric oxide colloid: Towards green nano-fertilizer for tomato plant with enhanced vegetative growth and immune response against fusarium wilt disease. Journal of Inorganic and Organometallic Polymers and Materials, 32(11):4270-4283.
El-Chaghaby, G., Rashad, S., Abdel-Kader, S. F., A Rawash, E. S., & Abdul Moneem, M. (2019). Assessment of phytochemical components, proximate composition and antioxidant properties of Scenedesmus obliquus, Chlorella vulgaris and Spirulina platensis algae extracts. Egyptian Journal of Aquatic Biology and Fisheries, 23(4):521-526.
El-Sheekh, M., Abu-Faddan, M., Abo-Shady, A., Nassar, M. Z. A., & Labib, W. (2020). Molecular identification, biomass, and biochemical composition of the marine chlorophyte Chlorella Sp. MF1 isolated from Suez Bay. Journal of Genetic Engineering and Biotechnology, 18(1):1-10.
Erfianti, T., Daryono, B. S., Budiman, A., & Suyono, E. A. (2023). Growth and metabolite enhancement of acidophile Euglena sp. isolated from Indonesia under different photoperiod cycles. Jurnal Ilmiah Perikanan dan Kelautan, 16(1):15-30.
Farhat, N., Elkhouni, A., Zorrig, W., Smaoui, A., Abdelly, C., & Rabhi, M. (2016). Effects of magnesium deficiency on photosynthesis and carbohydrate partitioning. Acta Physiologiae Plantarum, 38(6):1-10.
Hanieh, B., Zahra, D., Elyas N. E., Enas, R. A., Elyas, N. E., Enas, R. A., Abbas, F. A., Ali, K. K., Mehdi, B., Golnaz, R., Alireza, M., Pegah, R., & Naseh, P. (2023). The effects of Chlorella vulgaris on cardiovascular risk factors: A comprehensive review on putative molecular mechanisms. Biomedicine & Pharmacotherapy, 162(6):1-10.
Hazra, B., Biswas, S., & Mandal, N. (2008). Antioxidant and free radical scavenging activity of Spondias pinnata. BMC Complementary and Alternative Medicine, 8(1):1-10.
Indrayani, I., Ramadani, N. Z., Mawaddah, N., Kaseng, E. S., Sukainah, A., Putra, R. P., Hambali, A., Fadilah, R., Nurmila, & Ardiansyah. (2023). Influence of different culture media and light intensity on the growth and biomass productivity of a newly isolated Chlorella sp. UNM-IND1 from Waepella hot spring, South Sulawesi, Indonesia. Journal AACL Bioflux, 16(3):1508-1518.
Iriani, D., Hasan, B., Putra, H. S., & Ghazali, T. M. (2021). Optimization of culture conditions on growth of Chlorella sp. newly isolated from Bagansiapiapi Waters Indonesia. IOP Conference Series: Earth and Environmental Science, 934(012097):1-8.
Iriani, D., Hasan, B., Sari, N. I., & Alfionita, V. (2023). Preparation of face mask from microalga Chlorella sp. and its potential as antiaging. Pharmacognosy Journal, 15(1):112-118.
Iriani, D., Orasa, S., & Nittaya, C. (2011). Effect of iron concentration on growth, protein content and total phenolic content of Chlorella sp. cultured in basal medium. Sains Malaysiana, 40(4):353-58.
Iriani, D., Suriyaphan, O., Chaiyanate, N., & Hasan, B. (2017). Culturing of Chlorella sp. with different of Iron (Fe3+) concentration in bold’s basal medium for healthy and nutritious cookies. Applied Science and Technology, 1(1):218-226.
Jerez-Martel, I., García-Poza, S., Rodríguez-Martel, G., Rico, M., Afonso-Olivares, C., & Gómez-Pinchetti, J. L. (2017). Phenolic profile and antioxidant activity of crude extracts from microalgae and Cyanobacteria strains. Journal of Food Quality, 2017(1):1-8.
Kent, M., Welladsen, H. M., Mangott, A., & Li, Y. (2015). Nutritional evaluation of Australian microalgae as potential human health supplements. Plos One, 10(2):1-14.
Khan, A. N. M., Habib, M. A. B., & Miah, M. I. (2020). Effects of inorganic media enriched with sodium acetate on the growth performance and nutrient content in the microalga Chlorella vulgaris. Journal of Fisheries & Environment, 44(3):32-44.
Kim, G., Mujtaba, G., & Lee, K. (2016). Effects of nitrogen sources on cell growth and biochemical composition of marine chlorophyte Tetraselmis sp. for lipid production. Algae, 31(3):257-266.
Kim, H. S., Park, W., Lee, B., Seon, G., I. Suh, W., Moon, M., & Chang, Y. K. (2019). Optimization of heterotrophic cultivation of Chlorella sp. HS2 using screening, statistical assessment, and validation. Journal Scientific Reports, 9(1):1-13.
Kurutas, E. B. (2016). The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: Current state. Nutrition Journal, 15(1):1-22.
Li, X., Li, W., Zhai, J., Wei, H., & Wang, Q. (2019). Effect of ammonium nitrogen on microalgal growth, biochemical composition and photosynthetic performance in Mixotrophic cultivation. Bioresource Technology, 273(3):368-376.
Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods in Enzymology, 148(1):350-382.
Maisarah, M., Saefumillah, A., & Ambarsari, H. (2020). Study of Microalgae (Scenedesmus sp.) utilization as phosphate bioremediator (PO43−) in domestic wastewater medium. IOP Conference Series: Materials Science and Engineering, 763(1):1-9.
Mandal, P., Babu, S. S., & Mandal, N. C. (2005). Antimicrobial activity of aponins from Acacia auriculiformis. Fitoterapia, 76(5):462-465.
Matos, A. P., Ferreira, W. B., Morioka, L. R. I., Moecke, E. H. S., França, K. B., & Sant’Anna, E. S. (2018). Cultivation of Chlorella vulgaris in medium supplemented with desalination concentrate grown in a pilot-scale open raceway. Brazilian Journal of Chemical Engineering, 35(18):1183-1192.
Mavrommatis, A., Tsiplakou, E., Zerva, A., Pantiora, P. D., Georgakis, N. D., Tsintzou, G. P, Madesis, P., Labrou, N. E. (2023). Microalgae as a sustainable source of antioxidants in animal nutrition, health and livestock development. Antioxidants, 12(10):1-21.
Mirzaie, M. M. A., Kalbasi, M., Mousavi, S. M., & Ghobadian, B. (2016). Investigation of mixotrophic, heterotrophic, and autotrophic growth of Chlorella vulgaris under agricultural waste medium. Preparative Biochemistry and Biotechnology, 46(2):150-156.
Molyneux, P. (2004). The use of the stable free radical Diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin Journal of Science Technology, 26(2):211-219.
Muhammad. I., Yang, L., Ahmad, S., Farooq, S., Al-Ghamdi, A. A., & Khan, A., Zhou, X. B. (2022). Nitrogen fertilizer modulates plant growth, chlorophyll pigments and enzymatic activities under different irrigation regimes. Agronomy, 12(4):1-20.
Nafiu, M. O., & Ashafa, A. O. T. (2017). Antioxidant and inhibitory effects of saponin extracts from Dianthus basuticus Burtt Davy on key enzymes implicated in type 2 diabetes in vitro. Pharmacognosy Magazine, 13(52):576-582.
Ngo, D. H., Wijesekara, I., Vo, T. S., Van Ta, Q., & Kim, S. K. (2011). Marine food-derived functional ingredients as potential antioxidants in the food industry: An overview. Food Research International, 44(2):523-529.
Olasehinde, T. A., Olaniran, A. O., & Okoh, A. I. (2017). Therapeutic potentials of microalgae in the treatment of Alzheimer’s disease. Molecules, 22(3):1-18.
Pandithurai, M., Murugesan, S., Bhuvaneswari, S., & Thennarasan, S. (2015). In vitro α-amylase and α-glucosidase inhibition activity of methanolic extract of marine brown alga Spatoglossum asperum. International Journal of Advances in Pharmaceutics, 4(5):83-87.
Peng, L., Zhang, Z., Lan, C. Q., Basak, A., Bond, N., Ding, X., & Du, J. (2017). Alleviation of oxygen stress on Neochloris Oleoabundans: Effects of bicarbonate and pH. Journal of Applied Phycology, 29(1):143-152.
Polterait, O. (1997). Antioxidants and free radical scavengers of natural origin. Current organic chemistry, 1(4):415-440.
Prabakaran, G., Moovendhan, M., Arumugam, A., Matharasi, A., Dineshkumar, R., & Sampathkumar, P. (2018). Quantitative analysis of phytochemical profile in marine microalgae Chlorella vulgaris. International Journal of Pharmacy and Biological Science, 8(2):562-565.
Pradhan, B., Baral, S., Patra, S., Behera, C., Nayak, R., MubarakAli, D., & Jena, M. (2020). Delineation of gamma irradiation (60oC) induced oxidative stress by decrypting antioxidants and biochemical responses of microalga, Chlorella sp. Biocatalysis and Agricultural Biotechnology, 25(3):1-11.
Putri, T. W., Nursida, N. F., & Raya, I. (2021). Antioxidant activity of Chlorella vulgaris used as an antioxidant cream. In Journal of Physics: Conference Series, 1899(012030):1-5.
Rakhmadumila, D. H., & Muntalif, B. S. (2020). Artificial produced water as a medium to grow Chlorella sp. for biodiesel production. Journal E3S Web of Conferences, 148(8):1-8.
Rasala, B. A., & Mayfield, S. P. (2015). Photosynthetic biomanufacturing in green algae; production of recombinant proteins for industrial, nutritional, and medical uses. Photosynthesis Research, 123(3):227-239.
Raven, J. A., & Giordano, M. (2016). Combined nitrogen. In:Borowitzka, M.,Beardall, J., & Raven, J. (Eds.), The physiology of microalgae. Developments in applied phycology, vol 6 (pp. 143-154). Switzerland: Springer.
Ridlo, A., Pringgenies, D., Perangin-angin, R. A. B., & Ariyanto, D. (2023). Phytochemicals and antioxidant activity of microalgae Dunaliella salina and Botryococcus braunii. Jurnal Ilmiah Perikanan dan Kelautan, 15(2):438-447.
Rowan, K. S. (1989). Photosynthetic pigments of algae. Cambridge: Cambridge University Press.
Roy, U. K., Wagne, J., & Radu, T. (2023). Production of metabolites in microalgae under alkali halophilic growth medium using a dissolved inorganic carbon source. Waste and Biomass Valorization, 14(1):3339-3354.
Sadewo, R. P., Hidhayati, N., Ambarsari, L., & Anam, K. (2022). CO2 sequestration using sodium hydroxide and its utilization for Chlorella sorokiniana biomass production. Journal of Biology & Biology Education, 14(3):391-399.
Salbitani, G., & Carfagna, S. (2021). Ammonium utilization in microalgae: A sustainable method for wastewater treatment. Sustainability, 13(2):1-17.
Sassi, A. S., Aydi, S., Kolsi, R. B. A., Haddeji, N., Rahmani, R., Ktari, N., & Bouajila, J. (2020). CO2 enrichment: Enhancing antioxidant, antibacterial and anticancer activities in Arthrospira platensis. Food Bioscience, 35(3):1-8.
Septrianzu, J. (2024). Design and construction of web-based property sales value using linear regression. Jurnal Sains dan Teknologi, 4(1):27-45.
Sharifi-Rad, J., Rapposell, S., Sestito, S., Herrera-Bravo, J., Arancibia-Diaz, A., & Salaza, L. A. (2022). Multi-target mechanisms of phytochemicals in Alzheimer’s disease: Effects on oxidative stress, neuroinflammation and protein aggregation. Journal of Personalized Medicine, 12(9):1-25.
Shekarabi, S. P. H., Mehrgan, M. S., Razi, N., & Sabzi, S. (2019). Biochemical composition and fatty acid profile of the marine microalga Isochrysis galbana dried with different methods. The Journal of Microbiology, Biotechnology and Food Sciences, 9(3):521-524.
Siahbalaei, R., Kavoosi, G., & Noroozi, M. (2021). Protein nutritional quality, amino acid profile, anti-amylase and anti-glucosidase properties of microalgae: Inhibition and mechanisms of action through in vitro and in silico studies. LWT, 150(17):1-11.
Srinivasan, R., Mageswari, A., Subramanian, P., Suganthi, C., Chaitanyakumar, A., Aswini, V., & Gothandam, K. M. (2018). Bicarbonate supplementation enhances growth and biochemical composition of Dunaliella salina V-101 by reducing oxidative stress induced during macronutrient deficit conditions. Scientific Reports, 8(1):1-14.
Stansell, G. R., Gray, V. M., & Sym, S. D. (2012). Microalgal fatty acid composition: Implications for biodiesel quality. Journal of Applied Phycology, 24(3):791-801.
Thongpitak, J., Pekkoh, J., & Pumas, C. (2018). simple medium formulation for manganese remediation by green microalga Pediastrum Duplex AARLG060. Chiang Mai of Journal Science, 45(3):1247-1256.
Tokuşoglu, Ö., & Üunal, M. K. (2003). Biomass nutrient profiles of three microalgae: Spirulina platensis, Chlorella vulgaris, and Isochrisis galbana. Journal of Food Science, 68(4):1144-1148.
Valenzuela, B., Tapia, O., Gonzalez, E. M., & Valenzuela, A. (2011). Omega-3 fatty acids (EPA and DHA) and its application in diverse clinical situations. Revista Chilena de Nutrición, 38(3):356-367.
Vignaud, J., Loiseau, C., Hérault, J., Mayer, C., Côme, M., Martin, I., & Ulmann, L. (2023). Microalgae produce antioxidant molecules with potential preventive effects on mitochondrial functions and skeletal muscular oxidative stress. Antioxidants, 12(5):1-9.
Wang, Q., Shan, C., Zhang, P., Zhao, W., Zhu, G., Sun, Y., & Rui, Y. (2023). The combination of nanotechnology and potassium: Applications in agriculture. Environmental Science and Pollution Research, 31(2):1-17.
Wang, Y., Tibbetts, S. M., & McGinn, P. J. (2021). Microalgae as sources of high-quality protein for human food and protein supplements. Foods, 10(12):1-10.
Widowati, I., Zainuri. M., Kusumaningrum, H. P., & Hardivillier, Y. (2021). Antibacterial activity of microalgae Dunaliella salina, Tetraselmis chuii and Isochrysis galbana against aquatic pathogens. Ilmu Kelautan: Indonesian Journal of Marine Sciences, 26(4):265-270.
Wong, Y. K., Ho, Y. H., Ho, K. C., Leung, H. M., & Yung, K. K (2017). Maximization of cell growth and lipid production of freshwater microalga Chlorella vulgaris by enrichment technique for biodiesel production. Environmental Science and Pollution Research, 24(10):9089-9101.
Wu, K., Fang, Y., Hong, B., Cai, Y., Xie, H., Wang, Y., & Zhang, Q. (2022). Enhancement of carbon conversion and value-added compound production in heterotrophic Chlorella vulgaris using Sweet sorghum extract. Foods, 11(17):1-12.
Yu, B. S., Sung, Y. J., Hong, M. E., & Sim, S. J. (2021). Improvement of photoautotrophic algal biomass production after interrupted CO2 Supply by Urea and KH2PO4 injection. Energies, 14(3):1-14.
Yun, H., Kim, Y., & Yoon, H. (2021). Effect of different cultivation modes (photoautotrophic, mixotrophic, and heterotrophic) on the growth of Chlorella sp. and biocompositions. Journal Frontiers in Bioengineering and Biotechnology, 9(1):1-14.
Yuniarti, A., Fakhri, M., Arifin, N. B., & Hariati, A. M. (2023). Effects of various nitrogen sources on the growth and biochemical composition of Chlorella sp. Jurnal Ilmiah Perikanan dan Kelautan, 15(2):448-457.