
Date Log
Copyright (c) 2025 Jurnal Ilmiah Perikanan dan Kelautan

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
1. Copyright of the article is transferred to the journal, by the knowledge of the author, whilst the moral right of the publication belongs to the author.
2. The legal formal aspect of journal publication accessibility refers to Creative Commons Atribusi-Non Commercial-Share alike (CC BY-NC-SA), (https://creativecommons.org/licenses/by-nc-sa/4.0/)
3. The articles published in the journal are open access and can be used for non-commercial purposes. Other than the aims mentioned above, the editorial board is not responsible for copyright violation
The manuscript authentic and copyright statement submission can be downloaded ON THIS FORM.
Water Mass and Indirect Estimation of Turbulent Mixing Based on Observational CTD Yoyo Data in Flores Sea Waters, Indonesia
Corresponding Author(s) : Gentio Harsono
Jurnal Ilmiah Perikanan dan Kelautan, 2025: IN PRESS ISSUE (JUST ACCEPTED MANUSCRIPT, 2025)
Abstract
Graphical Abstract
Highlight Research
- Three distinct water layers were identified: surface (0-50 m), thermocline (50-180 m), and deep (>180 m).
- The thermocline layer is the most stable, with high Brunt-Väisälä frequency and low Thorpe displacement values.
- The highest energy dissipation rates were observed in the thermocline layer.
- Vertical diffusivity values were highest in the thermocline layer and decreased with depth.
Abstract
The Flores Sea is on the western ITF trajectory connecting the Pacific and Indian oceans. Identification and quantification of turbulent mixing of water masses in the Flores Sea are essential for analyzing large-scale ocean circulation processes, including the circulation of the Indonesian ocean interior. However, direct estimations of turbulent mixing in the Flores Sea as a part of the ITF are underestimated. This research aims to determine water conditions, stratification, and water mass structures. This research used data obtained from the CTD instrument applying a Yoyo casting method deployed in March − April 2023. On the other hand, the Thorpe method was used to estimate turbulent vertical mixing based on the values of energy dissipation and vertical diffusivity. The waters are stratified into three layers, mixed layer (1−50 m), thermocline layer (50−180 m), and deep layer (180−500 m). The CTD data showed the presence of a stable thermocline layer dominated by ITF water masses carrying water masses from the Pacific Ocean (North Pacific Intermediate Water (NPIW) and North Pacific Subtropical Water (NPSW)) from the western ITF path. The energy dissipation value obtained at the study site was about 3.36E-07 W Kg-1 and the vertical diffusivity value was approximately 5.25E-05 m2s-1. The thermocline layer showed a large energy dissipation value which was strongly associated with the friction of the ITF, suggesting that turbulent mixing in this region is primarily driven by the interaction of ITF water masses with the surrounding environment.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Aldrian, E., & Susanto, R. D. (2003). Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature. International Journal of Climatology: A Journal of the Royal Meteorological Society, 23(12):1435-1452.
- Arthur, R. S., Venayagamoorthy, S. K., Koseff, J. R., & Fringer, O. B. (2017). How we compute N matters to estimates of mixing in stratified flows. Journal of Fluid Mechanics, 831(2):1-10.
- Atmadipoera, A. S., & Hasanah, P. (2017). Characteristics and variability of arlindo Flores and its coherence with the South Java coastal current. Jurnal Ilmu dan Teknologi Kelautan Tropis, 9(2):537-556.
- Atmadipoera, A., Molcard, R., Madec, G., Wijffels, S., Sprintall, J., Koch-Larrouy, A., Jaya, I., & Supangat, A. (2009). Characteristics and variability of the Indonesian throughflow water at the outflow straits. Deep Sea Research Part I: Oceanographic Research Papers, 56(11):1942-1954.
- Atmadipoera, A. S., & Widyastuti, P. (2014). A numerical modeling study on upwelling mechanism in Southern Makassar Strait. Jurnal Ilmu dan Teknologi Kelautan Tropis, 6(2):355-371.
- Atmaja, R. R. P., Radjawane, I. M., & Tarya, A. (2019). Tidal current patterns in Wakatobi waters. Paper presented at Seminakel, University of Hang Tuah.
- Caulfield, C., P. (2021). Layering, instabilities, and mixing in turbulent stratified flows. Annual Review of Fluid Mechanics, 53(5):113-145.
- Cuypers, Y., Pous, S., Sprintall, J., Atmadipoera, A., Madec, G., & Molcard, R. (2017). Deep circulation driven by strong vertical mixing in the Timor basin. Ocean Dynamics, 67(2):191-209.
- Dillon, T. M. (1982). Vertical overturns: A comparison of Thorpe and Ozmidov length scales. Journal of Geophysical Research: Oceans, 87(12):9601-9613.
- Du, Y., & Qu, T. (2010). Three inflow pathways of the Indonesian throughflow as seen from the simple ocean data assimilation. Dynamics of Atmospheres and Oceans, 50(2):233-256.
- Emery, W. J. (2001). Water types and water masses. Encyclopedia of Ocean Sciences, 6(1):3179-3187.
- Fan, W., Jian, Z., Dang, H., Wang, Y., Bassinot, F., Han, X., & Bian, Y. (2018). Variability of the Indonesian throughflow in the Makassar strait over the last 30 Ka. Scientific Reports, 8(1):1-8.
- Ferron, B., Mercier, H., Speer, K., Gargett, A., & Polzin, K. (1998). Mixing in the Romanche Fracture Zone. Journal of Physical Oceanography, 28(10):1929-1945.
- Ffield, A., & Gordon, A. L. (1992). Vertical mixing in the Indonesian thermocline. Journal of Physical Oceanography, 22(1):184-195.
- Fox-Kemper, B., Adcroft, A., Böning, C. W., Chassignet, E. P., Curchitser, E., & Danabasoglu, G. (2019). Challenges and prospects in ocean circulation models. Frontiers in Marine Science, 65(6):1-29.
- Gordon, A., Sprintall, J., van Aken, H., Susanto, R. D., Wijffels, S., Molcard, R., Ffield, A., & Pranowo, W. (2010). The Indonesian throughflow during 2004–2006 as observed by the instant program. Dynamics of Atmospheres and Oceans, 50(2):113-114.
- Gregg, M. C., D'Asaro, E. A., Riley, J. J., & Kunze, E. (2018). Mixing efficiency in the ocean. Annual Review of Marine Science, 10(1):443-473.
- Guinehut, S., Dhomps, A.-L, Larnicol, G., & Le Traon, P.-Y. (2012). High resolution 3-D temperature and salinity fields derived from in situ and satellite observations. Ocean Science, 8(5):845-857.
- Habibi, A., Setiawan, R. Y., & Zuhdy, A. Y. (2012). Wind-driven coastal upwelling along south of Sulawesi Island. Ilmu Kelautan: Indonesian Journal of Marine Sciences, 15(2):113-118.
- Hao, J., Chen, Y., Wang, F., & Lin, P. (2012). Seasonal thermocline in the China Seas and Northwestern Pacific Ocean. Journal of Geophysical Research: Oceans, 117(2):1-14.
- Harsono, G., Purwanto, B., Gultom, R. A., Puliwarna, T., Setiyadi, J., Ando, K., & Cobral, M. (2021). Seawater masses characteristics of the Bali Sea based on CTD Yoyo casting. Ilmu Kelautan: Indonesian Journal of Marine Sciences, 26(4):282-297.
- Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., & Thépaut, J. N. (2023). Era5 hourly data on single levels from 1940 to present. Copernicus climate change service (C3S) climate data store (CDS).
- Jackett, D. J., & McDougall, T. J. (1995). Minimal adjustment of hydrographic profiles to achieve static stability. Journal of Atmospheric and Oceanic Technology, 12(2):381-389.
- Karang, I. W. G. A., Chonnaniyah, & Osawa, T. (2019). Internal solitary wave observations in the Flores Sea using the himawari-8 geostationary satellite. International Journal of Remote Sensing, 41(15):5726-5742.
- Koch-Larrouy, A., Lengaigne, M., Terray, P., Madec, G., & Masson, S. (2010). Tidal mixing in the Indonesian seas and its effect on the tropical climate system. Climate Dynamics, 34(1):891-904.
- Kunarso, Situmorang, R. P., Wulandari, S. Y., & Ismanto, A. (2018). Variability of upwelling in Bone Bay and Flores Sea. International Journal of Civil Engineering and Technology, 9(10):742-751.
- Kurniawan, R., Suriamihardja, Dadang., & Muhammad, A. (2018). Upwelling dynamic based on satellite and INDESO data in the Flores Sea. Journal of Physics: Conference Series, 979(1):1-12.
- Liu, C., Huo, D., Liu, Z., Wang, X., Guan, C., Qi, J., & Wang, F. (2022). Turbulent mixing in the barrier layer of the equatorial Pacific Ocean. Geophysical Research Letters, 49(5):1-9.
- Liu, C., Köhl, A., Liu, & Z. Stammer D. (2016). Deep-reaching thermocline mixing in the equatorial Pacific cold tongue. Nature Communications, 7(1):1-15.
- Mao, H., Feng, M., Qi, Y., & Keesing, J. K. (2022). Observation of strong turbulent mixing in the Australian North West shelf. Regional Studies in Marine Science, 55(1):1-15.
- McDougall, T. J. & Barker, P. M. (2011). Getting started with TEOS10 and the Gibbs Seawater (GSW) oceanographic toolbox. SCOR/IAPSO WG127. 28 pp. ISBN 978-0-646-55621-5.
- Mulet, S., Rio, M. H., Mignot, A., Guinehut, S., & Morrow, R. (2012). A new estimate of the global 3-D geostrophic ocean circulation based on satellite data and in-situ measurements. Deep Sea Research Part II: Topical Studies in Oceanography, 4(12):77-80.
- Nababan, B., Rosyadi, N., Manurung, D., Natih, N. M., & Hakim, R. (2016). The seasonal variability of sea surface temperature and chlorophyll-a concentration in the South of Makassar Strait. Procedia Environmental Sciences, 33(2016):583-599.
- Nagai, T., & Hibiya, T. (2015). Internal tides and associated vertical mixing in the Indonesian archipelago. Journal of Geophysical Research, 120(1):3373-3390.
- Nagai, T., & Hibiya, T. (2020). Combined effects of tidal mixing in narrow straits and the Ekman transport on the sea surface temperature cooling in the southern Indonesian Seas. Journal of Geophysical Research, 125(1):1-13.
- Nagai, T., Hibiya, T., & Syamsudin, F. (2021). Direct estimates of turbulent mixing in the Indonesian archipelago and its role in the transformation of the Indonesian throughflow waters. Geophysical Research Letters, 48(1):1-9.
- Napitupulu G., Nurdjaman, S., Fekranie, N. A., Suprijo, S., & Subehi, L. (2022). Analysis of upwelling in the Southern Makassar Strait in 2015 using aqua-modis satellite image. Journal of Water Resources and Ocean Science, 11(4):64-70.
- Nontji, A. (2005). Archipelago Sea. Anugerah Nontji. Jakarta. Djambatan. Thurman.
- Osborn, T. R. (1980). Estimates of the local rate of vertical diffusion from dissipation measurements. Journal of Physical Oceanography, 10(1):83-89.
- Putriani, P. Y., Atmadipoera, A. S., & Nugroho, D. (2019). Interannual variability of Indonesian throughflow in the Flores Sea. IOP Conference Series: Earth and Environmental Science, 278(1):1-14.
- Purwandana, A., Cuypers, Y., Bouruet-Aubertot, P., Nagai, T., Hibiya, T., & Atmadipoera, A. S. (2020). Spatial structure of turbulent mixing inferred from historical CTD datasets in the Indonesian Seas. Progress in Oceanography, 184(5):1-20.
- Purwandana, A., & Iskandar, M. R. (2020). Turbulent mixing inferred from CTD datasets in the Western Tropical Pacific Ocean. Ilmu Kelautan: Indonesian Journal of Marine Sciences, 25(4):148-156.
- Putri, A. R. S., Zainuddin, M., Musbir., Mustapha, M. A., Hidayat, R., & Putri, R. S. (2021). Impact of increasing sea surface temperature on skipjack tuna habitat in the Flores Sea, Indonesia. IOP Conference Series: Earth and Environmental Science, 763(1):1-9.
- Ray, R. D., Egbert, G. D., & Erofeeva, S. Y. (2005). A brief overview of tides in the Indonesian Seas. Oceanography, 18(4):74-79.
- Ray, R. D., & Susanto, R. D. (2016). Tidal mixing signatures in the Indonesian Seas from high-resolution sea surface temperature data. Geophysical Research Letters, 43(8):1-9.
- Robertson, R., & Ffield, A. (2005). M2 baroclinic tides in the Indonesian Seas. Oceanography, 18(4):62-73.
- Robertson, R., & Ffield, A. (2008). Baroclinic tides in the Indonesian Seas: Tidal fields and comparisons to observations. Journal of Geophysical Research: Oceans, 113(7):1-22.
- Sharples, J., Moore, C. M., & Abraham, E. R. (2001). Internal tide dissipation, mixing, and vertical nitrate flux at the shelf edge of NE New Zealand. Journal of Geophysical Research: Oceans, 106(7):14069-14081.
- Silaban, L. L., Atmadipoera, A. S., Hartanto, M. T., & Herlisman. (2021). Water mass characteristics in the Makassar Strait and Flores Sea in August-September 2015. IOP Conf. Series: Earth and Environmental Science, 944(2021):1-12.
- Sprintall, J., Gordon, A. L., Lee, T., Potemra, J. T., Pujiana, K., & Wijffels, S. E. (2014). The Indonesian Seas and their role in the Couple Ocean-Climate System. Nature Geoscience, (7):487-492.
- Sprintall, J., Gordon, A. L., Wijffels, S. E., Feng, M., Hu, S., Koch-Larrouy, A., Phillips, H., Nugroho, D., Napitu, A., & Pujiana, K. (2019). Detecting change in Indonesian Seas. Frontiers in Marine Science, 247(6):1-24.
- Sprintall, J., Wijffels, S., Gordon, A. L., Ffield, A., Molcard, R., Susanto, R. D., Soesilo, I., Sopaheluwakan, J., Surachman, Y., & van Aken, H. M. (2004). A new international array to measure the Indonesian throughflow: INSTANT. EOS, Transactions American Geophysical Union, 85(39):369-376.
- Sprintall, J., Wijffels, S. E., Molcard, R., & Jaya, I. (2009). Direct estimates of the Indonesian throughflow entering the Indian Ocean: 2004–2006. Journal of Geophysical Research, 114(1):1-19.
- St. Laurent, L. C., Simmons, H. L., & Jayne, S. R., (2002). Estimating tidally driven mixing in the deep ocean. Geophysical Research Letters, 29(23):21-1.
- Susanto, R. D., Ffield, A., Gordon, A. L., & Adi, T. R. (2012). Variability of Indonesian throughflow within Makassar Strait: 2004-2009. Journal of Geophysical Research, 117(9):1-16.
- Susanto, R. D., & Song, Y. T. (2015). Indonesian throughflow proxy from satellite altimeters and gravimeters. Journal of Geophysical Research, 120(4):1-12.
- Thorpe, S. A. (1977). Turbulence and mixing in a Scottish Loch. Philosophical Transactions of the Royal Society of London Series A, 286(1):125-181.
- Wang, P. X., Wang, B., Cheng, H., Fasullo, J., Guo, Z. T., Kiefer, T., & Liu, Z. Y. (2014). The global monsoon across timescales: Coherent variability of regional monsoons. Climate of the Past, 10(6):2007-2052.
- Wei, Z. X., Fang, G. H., Susanto, R. D., Adi, T. R., Fan, B., Setiawan, A., Li, S., Wang, Y. G., & Gao, X. M. (2016). Tidal elevation, current, and energy flux in the area between the South China Sea and Java Sea. Ocean Science, 12(2):517-531.
- Wunsch, C., & Ferrari, R. (2004). Vertical mixing, energy, and the general circulation of the oceans. Annual Review of Fluid Mechanics, 36(1):281-314.
- Wyrtki, K. (1987). Indonesian through flow and the associated pressure gradient. Journal of Geophysical Research, 92(12):12941-12946.
- Wyrtki, K. (1961). Physical oceanography of the Southeast Asian Waters. United States of America: The University of California, p.220.
- Yang, Q., Zhao, W., Li, M., & Tian, J. (2014). Spatial structure of turbulent mixing in the Northwestern Pacific Ocean. Journal of Physical Oceanography, 44(8):2235-2247.
- Yuliardi, A. Y., Atmadipoera, A. S., Harsono, G., N. Natih, N. M., & Ando, K. (2021). Analysis of characteristics and turbulent mixing of seawater mass in Lombok Strait. Ilmu Kelautan: Indonesian Journal of Marine Sciences, 26(2):95-109.
References
Aldrian, E., & Susanto, R. D. (2003). Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature. International Journal of Climatology: A Journal of the Royal Meteorological Society, 23(12):1435-1452.
Arthur, R. S., Venayagamoorthy, S. K., Koseff, J. R., & Fringer, O. B. (2017). How we compute N matters to estimates of mixing in stratified flows. Journal of Fluid Mechanics, 831(2):1-10.
Atmadipoera, A. S., & Hasanah, P. (2017). Characteristics and variability of arlindo Flores and its coherence with the South Java coastal current. Jurnal Ilmu dan Teknologi Kelautan Tropis, 9(2):537-556.
Atmadipoera, A., Molcard, R., Madec, G., Wijffels, S., Sprintall, J., Koch-Larrouy, A., Jaya, I., & Supangat, A. (2009). Characteristics and variability of the Indonesian throughflow water at the outflow straits. Deep Sea Research Part I: Oceanographic Research Papers, 56(11):1942-1954.
Atmadipoera, A. S., & Widyastuti, P. (2014). A numerical modeling study on upwelling mechanism in Southern Makassar Strait. Jurnal Ilmu dan Teknologi Kelautan Tropis, 6(2):355-371.
Atmaja, R. R. P., Radjawane, I. M., & Tarya, A. (2019). Tidal current patterns in Wakatobi waters. Paper presented at Seminakel, University of Hang Tuah.
Caulfield, C., P. (2021). Layering, instabilities, and mixing in turbulent stratified flows. Annual Review of Fluid Mechanics, 53(5):113-145.
Cuypers, Y., Pous, S., Sprintall, J., Atmadipoera, A., Madec, G., & Molcard, R. (2017). Deep circulation driven by strong vertical mixing in the Timor basin. Ocean Dynamics, 67(2):191-209.
Dillon, T. M. (1982). Vertical overturns: A comparison of Thorpe and Ozmidov length scales. Journal of Geophysical Research: Oceans, 87(12):9601-9613.
Du, Y., & Qu, T. (2010). Three inflow pathways of the Indonesian throughflow as seen from the simple ocean data assimilation. Dynamics of Atmospheres and Oceans, 50(2):233-256.
Emery, W. J. (2001). Water types and water masses. Encyclopedia of Ocean Sciences, 6(1):3179-3187.
Fan, W., Jian, Z., Dang, H., Wang, Y., Bassinot, F., Han, X., & Bian, Y. (2018). Variability of the Indonesian throughflow in the Makassar strait over the last 30 Ka. Scientific Reports, 8(1):1-8.
Ferron, B., Mercier, H., Speer, K., Gargett, A., & Polzin, K. (1998). Mixing in the Romanche Fracture Zone. Journal of Physical Oceanography, 28(10):1929-1945.
Ffield, A., & Gordon, A. L. (1992). Vertical mixing in the Indonesian thermocline. Journal of Physical Oceanography, 22(1):184-195.
Fox-Kemper, B., Adcroft, A., Böning, C. W., Chassignet, E. P., Curchitser, E., & Danabasoglu, G. (2019). Challenges and prospects in ocean circulation models. Frontiers in Marine Science, 65(6):1-29.
Gordon, A., Sprintall, J., van Aken, H., Susanto, R. D., Wijffels, S., Molcard, R., Ffield, A., & Pranowo, W. (2010). The Indonesian throughflow during 2004–2006 as observed by the instant program. Dynamics of Atmospheres and Oceans, 50(2):113-114.
Gregg, M. C., D'Asaro, E. A., Riley, J. J., & Kunze, E. (2018). Mixing efficiency in the ocean. Annual Review of Marine Science, 10(1):443-473.
Guinehut, S., Dhomps, A.-L, Larnicol, G., & Le Traon, P.-Y. (2012). High resolution 3-D temperature and salinity fields derived from in situ and satellite observations. Ocean Science, 8(5):845-857.
Habibi, A., Setiawan, R. Y., & Zuhdy, A. Y. (2012). Wind-driven coastal upwelling along south of Sulawesi Island. Ilmu Kelautan: Indonesian Journal of Marine Sciences, 15(2):113-118.
Hao, J., Chen, Y., Wang, F., & Lin, P. (2012). Seasonal thermocline in the China Seas and Northwestern Pacific Ocean. Journal of Geophysical Research: Oceans, 117(2):1-14.
Harsono, G., Purwanto, B., Gultom, R. A., Puliwarna, T., Setiyadi, J., Ando, K., & Cobral, M. (2021). Seawater masses characteristics of the Bali Sea based on CTD Yoyo casting. Ilmu Kelautan: Indonesian Journal of Marine Sciences, 26(4):282-297.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., & Thépaut, J. N. (2023). Era5 hourly data on single levels from 1940 to present. Copernicus climate change service (C3S) climate data store (CDS).
Jackett, D. J., & McDougall, T. J. (1995). Minimal adjustment of hydrographic profiles to achieve static stability. Journal of Atmospheric and Oceanic Technology, 12(2):381-389.
Karang, I. W. G. A., Chonnaniyah, & Osawa, T. (2019). Internal solitary wave observations in the Flores Sea using the himawari-8 geostationary satellite. International Journal of Remote Sensing, 41(15):5726-5742.
Koch-Larrouy, A., Lengaigne, M., Terray, P., Madec, G., & Masson, S. (2010). Tidal mixing in the Indonesian seas and its effect on the tropical climate system. Climate Dynamics, 34(1):891-904.
Kunarso, Situmorang, R. P., Wulandari, S. Y., & Ismanto, A. (2018). Variability of upwelling in Bone Bay and Flores Sea. International Journal of Civil Engineering and Technology, 9(10):742-751.
Kurniawan, R., Suriamihardja, Dadang., & Muhammad, A. (2018). Upwelling dynamic based on satellite and INDESO data in the Flores Sea. Journal of Physics: Conference Series, 979(1):1-12.
Liu, C., Huo, D., Liu, Z., Wang, X., Guan, C., Qi, J., & Wang, F. (2022). Turbulent mixing in the barrier layer of the equatorial Pacific Ocean. Geophysical Research Letters, 49(5):1-9.
Liu, C., Köhl, A., Liu, & Z. Stammer D. (2016). Deep-reaching thermocline mixing in the equatorial Pacific cold tongue. Nature Communications, 7(1):1-15.
Mao, H., Feng, M., Qi, Y., & Keesing, J. K. (2022). Observation of strong turbulent mixing in the Australian North West shelf. Regional Studies in Marine Science, 55(1):1-15.
McDougall, T. J. & Barker, P. M. (2011). Getting started with TEOS10 and the Gibbs Seawater (GSW) oceanographic toolbox. SCOR/IAPSO WG127. 28 pp. ISBN 978-0-646-55621-5.
Mulet, S., Rio, M. H., Mignot, A., Guinehut, S., & Morrow, R. (2012). A new estimate of the global 3-D geostrophic ocean circulation based on satellite data and in-situ measurements. Deep Sea Research Part II: Topical Studies in Oceanography, 4(12):77-80.
Nababan, B., Rosyadi, N., Manurung, D., Natih, N. M., & Hakim, R. (2016). The seasonal variability of sea surface temperature and chlorophyll-a concentration in the South of Makassar Strait. Procedia Environmental Sciences, 33(2016):583-599.
Nagai, T., & Hibiya, T. (2015). Internal tides and associated vertical mixing in the Indonesian archipelago. Journal of Geophysical Research, 120(1):3373-3390.
Nagai, T., & Hibiya, T. (2020). Combined effects of tidal mixing in narrow straits and the Ekman transport on the sea surface temperature cooling in the southern Indonesian Seas. Journal of Geophysical Research, 125(1):1-13.
Nagai, T., Hibiya, T., & Syamsudin, F. (2021). Direct estimates of turbulent mixing in the Indonesian archipelago and its role in the transformation of the Indonesian throughflow waters. Geophysical Research Letters, 48(1):1-9.
Napitupulu G., Nurdjaman, S., Fekranie, N. A., Suprijo, S., & Subehi, L. (2022). Analysis of upwelling in the Southern Makassar Strait in 2015 using aqua-modis satellite image. Journal of Water Resources and Ocean Science, 11(4):64-70.
Nontji, A. (2005). Archipelago Sea. Anugerah Nontji. Jakarta. Djambatan. Thurman.
Osborn, T. R. (1980). Estimates of the local rate of vertical diffusion from dissipation measurements. Journal of Physical Oceanography, 10(1):83-89.
Putriani, P. Y., Atmadipoera, A. S., & Nugroho, D. (2019). Interannual variability of Indonesian throughflow in the Flores Sea. IOP Conference Series: Earth and Environmental Science, 278(1):1-14.
Purwandana, A., Cuypers, Y., Bouruet-Aubertot, P., Nagai, T., Hibiya, T., & Atmadipoera, A. S. (2020). Spatial structure of turbulent mixing inferred from historical CTD datasets in the Indonesian Seas. Progress in Oceanography, 184(5):1-20.
Purwandana, A., & Iskandar, M. R. (2020). Turbulent mixing inferred from CTD datasets in the Western Tropical Pacific Ocean. Ilmu Kelautan: Indonesian Journal of Marine Sciences, 25(4):148-156.
Putri, A. R. S., Zainuddin, M., Musbir., Mustapha, M. A., Hidayat, R., & Putri, R. S. (2021). Impact of increasing sea surface temperature on skipjack tuna habitat in the Flores Sea, Indonesia. IOP Conference Series: Earth and Environmental Science, 763(1):1-9.
Ray, R. D., Egbert, G. D., & Erofeeva, S. Y. (2005). A brief overview of tides in the Indonesian Seas. Oceanography, 18(4):74-79.
Ray, R. D., & Susanto, R. D. (2016). Tidal mixing signatures in the Indonesian Seas from high-resolution sea surface temperature data. Geophysical Research Letters, 43(8):1-9.
Robertson, R., & Ffield, A. (2005). M2 baroclinic tides in the Indonesian Seas. Oceanography, 18(4):62-73.
Robertson, R., & Ffield, A. (2008). Baroclinic tides in the Indonesian Seas: Tidal fields and comparisons to observations. Journal of Geophysical Research: Oceans, 113(7):1-22.
Sharples, J., Moore, C. M., & Abraham, E. R. (2001). Internal tide dissipation, mixing, and vertical nitrate flux at the shelf edge of NE New Zealand. Journal of Geophysical Research: Oceans, 106(7):14069-14081.
Silaban, L. L., Atmadipoera, A. S., Hartanto, M. T., & Herlisman. (2021). Water mass characteristics in the Makassar Strait and Flores Sea in August-September 2015. IOP Conf. Series: Earth and Environmental Science, 944(2021):1-12.
Sprintall, J., Gordon, A. L., Lee, T., Potemra, J. T., Pujiana, K., & Wijffels, S. E. (2014). The Indonesian Seas and their role in the Couple Ocean-Climate System. Nature Geoscience, (7):487-492.
Sprintall, J., Gordon, A. L., Wijffels, S. E., Feng, M., Hu, S., Koch-Larrouy, A., Phillips, H., Nugroho, D., Napitu, A., & Pujiana, K. (2019). Detecting change in Indonesian Seas. Frontiers in Marine Science, 247(6):1-24.
Sprintall, J., Wijffels, S., Gordon, A. L., Ffield, A., Molcard, R., Susanto, R. D., Soesilo, I., Sopaheluwakan, J., Surachman, Y., & van Aken, H. M. (2004). A new international array to measure the Indonesian throughflow: INSTANT. EOS, Transactions American Geophysical Union, 85(39):369-376.
Sprintall, J., Wijffels, S. E., Molcard, R., & Jaya, I. (2009). Direct estimates of the Indonesian throughflow entering the Indian Ocean: 2004–2006. Journal of Geophysical Research, 114(1):1-19.
St. Laurent, L. C., Simmons, H. L., & Jayne, S. R., (2002). Estimating tidally driven mixing in the deep ocean. Geophysical Research Letters, 29(23):21-1.
Susanto, R. D., Ffield, A., Gordon, A. L., & Adi, T. R. (2012). Variability of Indonesian throughflow within Makassar Strait: 2004-2009. Journal of Geophysical Research, 117(9):1-16.
Susanto, R. D., & Song, Y. T. (2015). Indonesian throughflow proxy from satellite altimeters and gravimeters. Journal of Geophysical Research, 120(4):1-12.
Thorpe, S. A. (1977). Turbulence and mixing in a Scottish Loch. Philosophical Transactions of the Royal Society of London Series A, 286(1):125-181.
Wang, P. X., Wang, B., Cheng, H., Fasullo, J., Guo, Z. T., Kiefer, T., & Liu, Z. Y. (2014). The global monsoon across timescales: Coherent variability of regional monsoons. Climate of the Past, 10(6):2007-2052.
Wei, Z. X., Fang, G. H., Susanto, R. D., Adi, T. R., Fan, B., Setiawan, A., Li, S., Wang, Y. G., & Gao, X. M. (2016). Tidal elevation, current, and energy flux in the area between the South China Sea and Java Sea. Ocean Science, 12(2):517-531.
Wunsch, C., & Ferrari, R. (2004). Vertical mixing, energy, and the general circulation of the oceans. Annual Review of Fluid Mechanics, 36(1):281-314.
Wyrtki, K. (1987). Indonesian through flow and the associated pressure gradient. Journal of Geophysical Research, 92(12):12941-12946.
Wyrtki, K. (1961). Physical oceanography of the Southeast Asian Waters. United States of America: The University of California, p.220.
Yang, Q., Zhao, W., Li, M., & Tian, J. (2014). Spatial structure of turbulent mixing in the Northwestern Pacific Ocean. Journal of Physical Oceanography, 44(8):2235-2247.
Yuliardi, A. Y., Atmadipoera, A. S., Harsono, G., N. Natih, N. M., & Ando, K. (2021). Analysis of characteristics and turbulent mixing of seawater mass in Lombok Strait. Ilmu Kelautan: Indonesian Journal of Marine Sciences, 26(2):95-109.