Date Log
Copyright (c) 2021 Jurnal Ilmiah Perikanan dan Kelautan
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
1. Copyright of the article is transferred to the journal, by the knowledge of the author, whilst the moral right of the publication belongs to the author.
2. The legal formal aspect of journal publication accessibility refers to Creative Commons Atribusi-Non Commercial-Share alike (CC BY-NC-SA), (https://creativecommons.org/licenses/by-nc-sa/4.0/)
3. The articles published in the journal are open access and can be used for non-commercial purposes. Other than the aims mentioned above, the editorial board is not responsible for copyright violation
The manuscript authentic and copyright statement submission can be downloaded ON THIS FORM.
Optimization of Medium Composition for Streptomyces sp. PB2 Chitinase Production using Response Surface Methodology
Corresponding Author(s) : Indun Dewi Puspita
Jurnal Ilmiah Perikanan dan Kelautan, Vol. 14 No. 1 (2022): JURNAL ILMIAH PERIKANAN DAN KELAUTAN
Abstract
Highlight Research
- The chitinase production by Streptomyces sp. PB2 was studied
- The critical medium component for chitinase production were identified
- The optimum medium composition for chitinase production was obtained
- Medium optimization improved chitinase production by 6-fold increase in activity
Abstract
Chitin is a polysaccharide compound composed of N-acetylglucosamine (NAG), which is linked by β-1,4-glycoside bonds. In producing NAG from chitin, enzymatic method using chitinase offer advantages compared to chemical degradation. Streptomyces sp. PB2 is a good candidate of chitinase producer which was previously isolated from shrimp pond sediment. However, optimization of chitinase production by Streptomyces sp. PB2 is required for large-scale production of this enzyme. This study aimed to find the optimal medium composition to increase the chitinase enzyme activity of Streptomyces sp. PB2 using the Response Surface Method. Initial screening was done to determine additional carbon and nitrogen sources in colloidal chitin broth suitable for increasing chitinase activity. Optimization of the medium composition was conducted using the Plackett-Burman design to determine the critical components in the colloidal chitin broth medium and continued by Box-Behnken model to optimize the concentration of the medium components. Chitinase activity was obtained by measuring the amount of reducing sugar (NAG) released from enzymatic reaction using DMAB reagent by means of spectrophotometer. The medium components showing high contribution in increasing chitinase activity were K2HPO4, colloidal chitin and peptone, with the confidence level value of 0.66, 0.48, and 0.38, respectively. The Box-Behnken model analysis shows that the combination of K2HPO4 0.007 g/ml, colloidal chitin 1.5 g/ml and peptone 1.5 g/ml in colloidal chitin broth are the optimal medium for Streptomyces sp. PB2, resulted in chitinase activity of 0.0125 U/ml. The increase of 6-fold in chitinase activity was achieved in this study.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Bertoft, E. (2017). Understanding starch structure: Recent progress. Agronomy, 7(56):1-29.
- Box, G. E. P., & Draper, N. E. (2007). Response surfaces, mixtures, and ridge analyses (2nd ed.). New Jersey: John wiley & sons.
- Bruckner, R., & Titgemeyer, F. (2002). Carbon catabolite repression in bacteria: Choice of the carbon source and autoregulatory limitation of sugar utilization. FEMS Microbiology Letters, 209(2):141-148.
- Brzezinska, M. S., Jankiewicz, U., & Walczak, M. (2013). Biodegradation of chitinous substances and chitinase production by the soil actinomycete Streptomyces rimosus. International Biodeterioration & Biodegradation, 84:104-110.
- Chakrabortty, S., Bhattacharya, S., & Das, A. (2012). Optimization of process parameters for chitinase production by a marine isolate of Serratia marcescens. International Journal of Pharmacy and Biological Sciences, 2(2):8-20.
- Cheba, B. A., Zaghloul, T. I., El-Mahdy, A. R., & El-Massry, M. H. (2018). Effect of nitrogen sources and fermentation conditions on bacillus sp. R2 chitinase production. Procedia Manufacturing, 22(2018):280-287.
- Gao, L., Sun, J., Secundo, F., Gao, X., Xue, C., & Mao, X. (2018). Cloning, characterization and substrate degradation mode of a novel chitinase from Streptomyces albolongus ATCC 27414. Food Chemistry, 261:329-336.
- Han, Y., Li, Z., Miao, X., & Zhang, F. (2008). Statistical optimization of medium components to improve the chitinase activity of Streptomyces sp. Da11 associated with the South China Sea sponge Craniella australiensis. Process Biochemistry, 43(10):1088-1093.
- Hayek, S. A., & Ibrahim, S. A. (2013). Current limitations and challenges with Lactic Acid Bacteria: A review. Food and Nutrition Sciences, 04(11):73-87.
- Hsu, S. C., & Lockwood, J. L. (1975). Powdered chitin agar as a selective medium for enumeration of Actinomycetes in water and soil. Applied and Environmental Microbiology, 29(3):422-426.
- Jha, S., Modi, H. A., & Jha, C. K. (2016). Characterization of extracellular chitinase produced from Streptomyces rubiginosus isolated from rhizosphere of Gossypium sp. Cogent Food & Agriculture, 2(1):1198225.
- Karthik, N., Binod, P., & Pandey, A. (2015). Purification and characterisation of an acidic and antifungal chitinase produced by a Streptomyces sp. Bioresource Technology, 188:195-201.
- Kusumawijaya, I. F. (2018). Optimasi Produksi Kitinase Streptomyces sp. PB-2 pada berbagai pH Medium dan Suhu Inkubasi. Thesis. Yogyakarta: Universitas Gadjah Mada.
- Liang, T. W. (2010). Purification and characterization of chitinase from a new species strain Pseudomonas sp. TKU008. Journal of Microbiology and Biotechnology, 20(6):1001-1005.
- Meriem, G., & Mahmoud, K. (2017). Optimization of chitinase production by a new Streptomyces griseorubens C9 isolate using response surface methodology. Annals of Microbiology, 67(2):175-183.
- Montgomery, D. C. (2001). Design and analysis of experiments (5th ed.). New Jersey: John willey & sons.
- Narayana, K. J. P., & Vijayalakshmi, M. (2009). Chitinase production by Streptomyces sp. ANU 6277. Brazilian Journal of Microbiology, 40(4):725-733.
- Pelczar, M. J., & Chan, E. C. S. (1986). Elements of microbiology. In R.S. Hadioetomo, I. Teja, A.S. Lestari, dan T.S. Sutarmi (alih bahasa), Dasar-dasar mikrobiologi (1st ed.). Jakarta: Universitas Indonesia Press.
- Plackett, R. L., & Burman, J. P. (1946). The design of optimum multifactorial experiments. Biometrika, 33(4):305-325.
- Pramesti, E., & Puspita, I. D. (2020). Optimization of colloidal chitin and inoculum concentration in chitinase production by Streptomyces sp. PB2 using Response Surface Methodology. E3S Web of Conferences, 147(4):03011.
- Ray, L. (2018). Purification and characterization of an extracellular thermo-alkali stable, metal tolerant chitinase from Streptomyces chilikensis RC1830 isolated from a brackish water lake sediment. Biotechnology Reports, 21:e00311.
- Reissig, J. L., Strominger, J. L., & Leloir L. F. (1955). A modified colorimetric method for the estimation of N-Acetylamino sugars. Journal of Biological Chemistry, 217(2):959-966.
- Romero-Rodríguez, A., Rocha, D., Ruiz-Villafán, B., Guzmán-Trampe, S., Maldonado-Carmona, N., Vázquez-Hernández, M., Zelarayán, A., Rodríguez-Sanoja, R., & Sánchez, S. (2017). Carbon catabolite regulation in Streptomyces: new insights and lessons learned. World Journal of Microbiology and Biotechnology, 33(9):1-11.
- Saima, Kuddus, M., Roohi, & Ahmad, I. (2013). Isolation of novel chitinolytic bacteria and production optimization of extracellular chitinase. Journal of Genetic Engineering and Biotechnology, 11(1):39–46.
- Sanchez, S., & Demain, A. L. (2008). Metabolic regulation and overproduction of primary metabolites. Microbial Biotechnology, 1(4):283-319.
- Shivalee, A., Lingappa, K., & Mahesh, D. (2018). Influence of bioprocess variables on the production of extracellular chitinase under submerged fermentation by Streptomyces pratensis strain KLSL55. Journal of Genetic Engineering and Biotechnology, 16(2):421-426.
- Sukalkar, S. R., Kadam, T. A., & Bhosale, H. J. (2018). Optimization of chitinase production from Streptomyces macrosporeus M1. Research Journal of Life Science, Bioinformatics, Pharmaceutical, and Chemical Sciences, 4(1):106-114.
- Tarafdar, A., & Biswas, G. (2013). Extraction of chitosan from prawn shell wastes and examination of its viable commercial applications. International Journal of Theoritical and Applied Research in Mechanical Engineering, 2(3):17-24.
- Thiagarajan, V., Revathi, R., Aparanjini, K., Sivamani, P., Girilal, M., Priya, C. S., & Kalaichelvan, P. T. (2011). Extra cellular chitinase production by Streptomyces sp. PTK19 in submerged fermentation and its lytic activity on Fusarium oxysporum PTK2 cell wall. International Journal of Current Science, 1:30-44.
- Tork, S. E., Aly, M. M., & Elsemin, O. (2018). A new L-glutaminase from Streptomyces pratensis NRC 10: Gene identification, enzyme purification, and characterization. International Journal of Biological Macromolecules, 113:550-557.
- Triwijayani, A. U., Puspita, I. D., Murwantoko, & Ustadi. (2018). Identification of chitinolytic bacteria isolated from shrimp pond sediment and characterization of their chitinase encoding gene. IOP Conference Series: Earth and Environmental Science, 139:012051.
- Tuntun, M., & Huda, M. (2014). Isolasi dan identifikasi bakteri termofilik dari sumber air panas Way Panas Bumi Natar Lampung Selatan. Jurnal Analis Kesehatan, 3(1):297-304.
- Vinuselvi, P., Kim, M. K., Lee, S. K., & Ghim, C. M. (2012). Rewiring carbon catabolite repression for microbial cell factory. Biochemistry and Molecular Biology Reports, 45(2):59-70.
- Wang, Z. Z., Xu, T., Yuan, S. S., Liao, H. D., Yang, Y. Z., Zheng, X. D., Li, Y., Hu, X. C., Liu, Q., Zeng, J. R., Zhu, Y. H., & Liu, X. M. (2016). Identification of an endophytic actinomyces OsiRt-1 isolated from rice and its effect against rice blast disease. Microbiology China, 43(5):1009-1018.
- Xia, J. L., Xiong, J., Zhang, R. Y., Liu, K. K., Huang, B., & Nie, Z.-Y. (2011). Production of chitinase and its optimization from a novel isolate Serratia marcescens XJ-01. Indian Journal of Microbiology, 51(3):301-306.
- Yahiaoui, M., Laribi-Habchi, H., Bouacem, K., Asmani, K.-L., Mechri, S., Harir, M., Bendif, H., Aí¯ssani-El Fertas, R., & Jaouadi, B. (2019). Purification and biochemical characterization of a new organic solvent-tolerant chitinase from Paenibacillus timonensis strain LK-DZ15 isolated from the Djurdjura Mountains in Kabylia, Algeria. Carbohydrate Research, 483:107747.
References
Bertoft, E. (2017). Understanding starch structure: Recent progress. Agronomy, 7(56):1-29.
Box, G. E. P., & Draper, N. E. (2007). Response surfaces, mixtures, and ridge analyses (2nd ed.). New Jersey: John wiley & sons.
Bruckner, R., & Titgemeyer, F. (2002). Carbon catabolite repression in bacteria: Choice of the carbon source and autoregulatory limitation of sugar utilization. FEMS Microbiology Letters, 209(2):141-148.
Brzezinska, M. S., Jankiewicz, U., & Walczak, M. (2013). Biodegradation of chitinous substances and chitinase production by the soil actinomycete Streptomyces rimosus. International Biodeterioration & Biodegradation, 84:104-110.
Chakrabortty, S., Bhattacharya, S., & Das, A. (2012). Optimization of process parameters for chitinase production by a marine isolate of Serratia marcescens. International Journal of Pharmacy and Biological Sciences, 2(2):8-20.
Cheba, B. A., Zaghloul, T. I., El-Mahdy, A. R., & El-Massry, M. H. (2018). Effect of nitrogen sources and fermentation conditions on bacillus sp. R2 chitinase production. Procedia Manufacturing, 22(2018):280-287.
Gao, L., Sun, J., Secundo, F., Gao, X., Xue, C., & Mao, X. (2018). Cloning, characterization and substrate degradation mode of a novel chitinase from Streptomyces albolongus ATCC 27414. Food Chemistry, 261:329-336.
Han, Y., Li, Z., Miao, X., & Zhang, F. (2008). Statistical optimization of medium components to improve the chitinase activity of Streptomyces sp. Da11 associated with the South China Sea sponge Craniella australiensis. Process Biochemistry, 43(10):1088-1093.
Hayek, S. A., & Ibrahim, S. A. (2013). Current limitations and challenges with Lactic Acid Bacteria: A review. Food and Nutrition Sciences, 04(11):73-87.
Hsu, S. C., & Lockwood, J. L. (1975). Powdered chitin agar as a selective medium for enumeration of Actinomycetes in water and soil. Applied and Environmental Microbiology, 29(3):422-426.
Jha, S., Modi, H. A., & Jha, C. K. (2016). Characterization of extracellular chitinase produced from Streptomyces rubiginosus isolated from rhizosphere of Gossypium sp. Cogent Food & Agriculture, 2(1):1198225.
Karthik, N., Binod, P., & Pandey, A. (2015). Purification and characterisation of an acidic and antifungal chitinase produced by a Streptomyces sp. Bioresource Technology, 188:195-201.
Kusumawijaya, I. F. (2018). Optimasi Produksi Kitinase Streptomyces sp. PB-2 pada berbagai pH Medium dan Suhu Inkubasi. Thesis. Yogyakarta: Universitas Gadjah Mada.
Liang, T. W. (2010). Purification and characterization of chitinase from a new species strain Pseudomonas sp. TKU008. Journal of Microbiology and Biotechnology, 20(6):1001-1005.
Meriem, G., & Mahmoud, K. (2017). Optimization of chitinase production by a new Streptomyces griseorubens C9 isolate using response surface methodology. Annals of Microbiology, 67(2):175-183.
Montgomery, D. C. (2001). Design and analysis of experiments (5th ed.). New Jersey: John willey & sons.
Narayana, K. J. P., & Vijayalakshmi, M. (2009). Chitinase production by Streptomyces sp. ANU 6277. Brazilian Journal of Microbiology, 40(4):725-733.
Pelczar, M. J., & Chan, E. C. S. (1986). Elements of microbiology. In R.S. Hadioetomo, I. Teja, A.S. Lestari, dan T.S. Sutarmi (alih bahasa), Dasar-dasar mikrobiologi (1st ed.). Jakarta: Universitas Indonesia Press.
Plackett, R. L., & Burman, J. P. (1946). The design of optimum multifactorial experiments. Biometrika, 33(4):305-325.
Pramesti, E., & Puspita, I. D. (2020). Optimization of colloidal chitin and inoculum concentration in chitinase production by Streptomyces sp. PB2 using Response Surface Methodology. E3S Web of Conferences, 147(4):03011.
Ray, L. (2018). Purification and characterization of an extracellular thermo-alkali stable, metal tolerant chitinase from Streptomyces chilikensis RC1830 isolated from a brackish water lake sediment. Biotechnology Reports, 21:e00311.
Reissig, J. L., Strominger, J. L., & Leloir L. F. (1955). A modified colorimetric method for the estimation of N-Acetylamino sugars. Journal of Biological Chemistry, 217(2):959-966.
Romero-Rodríguez, A., Rocha, D., Ruiz-Villafán, B., Guzmán-Trampe, S., Maldonado-Carmona, N., Vázquez-Hernández, M., Zelarayán, A., Rodríguez-Sanoja, R., & Sánchez, S. (2017). Carbon catabolite regulation in Streptomyces: new insights and lessons learned. World Journal of Microbiology and Biotechnology, 33(9):1-11.
Saima, Kuddus, M., Roohi, & Ahmad, I. (2013). Isolation of novel chitinolytic bacteria and production optimization of extracellular chitinase. Journal of Genetic Engineering and Biotechnology, 11(1):39–46.
Sanchez, S., & Demain, A. L. (2008). Metabolic regulation and overproduction of primary metabolites. Microbial Biotechnology, 1(4):283-319.
Shivalee, A., Lingappa, K., & Mahesh, D. (2018). Influence of bioprocess variables on the production of extracellular chitinase under submerged fermentation by Streptomyces pratensis strain KLSL55. Journal of Genetic Engineering and Biotechnology, 16(2):421-426.
Sukalkar, S. R., Kadam, T. A., & Bhosale, H. J. (2018). Optimization of chitinase production from Streptomyces macrosporeus M1. Research Journal of Life Science, Bioinformatics, Pharmaceutical, and Chemical Sciences, 4(1):106-114.
Tarafdar, A., & Biswas, G. (2013). Extraction of chitosan from prawn shell wastes and examination of its viable commercial applications. International Journal of Theoritical and Applied Research in Mechanical Engineering, 2(3):17-24.
Thiagarajan, V., Revathi, R., Aparanjini, K., Sivamani, P., Girilal, M., Priya, C. S., & Kalaichelvan, P. T. (2011). Extra cellular chitinase production by Streptomyces sp. PTK19 in submerged fermentation and its lytic activity on Fusarium oxysporum PTK2 cell wall. International Journal of Current Science, 1:30-44.
Tork, S. E., Aly, M. M., & Elsemin, O. (2018). A new L-glutaminase from Streptomyces pratensis NRC 10: Gene identification, enzyme purification, and characterization. International Journal of Biological Macromolecules, 113:550-557.
Triwijayani, A. U., Puspita, I. D., Murwantoko, & Ustadi. (2018). Identification of chitinolytic bacteria isolated from shrimp pond sediment and characterization of their chitinase encoding gene. IOP Conference Series: Earth and Environmental Science, 139:012051.
Tuntun, M., & Huda, M. (2014). Isolasi dan identifikasi bakteri termofilik dari sumber air panas Way Panas Bumi Natar Lampung Selatan. Jurnal Analis Kesehatan, 3(1):297-304.
Vinuselvi, P., Kim, M. K., Lee, S. K., & Ghim, C. M. (2012). Rewiring carbon catabolite repression for microbial cell factory. Biochemistry and Molecular Biology Reports, 45(2):59-70.
Wang, Z. Z., Xu, T., Yuan, S. S., Liao, H. D., Yang, Y. Z., Zheng, X. D., Li, Y., Hu, X. C., Liu, Q., Zeng, J. R., Zhu, Y. H., & Liu, X. M. (2016). Identification of an endophytic actinomyces OsiRt-1 isolated from rice and its effect against rice blast disease. Microbiology China, 43(5):1009-1018.
Xia, J. L., Xiong, J., Zhang, R. Y., Liu, K. K., Huang, B., & Nie, Z.-Y. (2011). Production of chitinase and its optimization from a novel isolate Serratia marcescens XJ-01. Indian Journal of Microbiology, 51(3):301-306.
Yahiaoui, M., Laribi-Habchi, H., Bouacem, K., Asmani, K.-L., Mechri, S., Harir, M., Bendif, H., Aí¯ssani-El Fertas, R., & Jaouadi, B. (2019). Purification and biochemical characterization of a new organic solvent-tolerant chitinase from Paenibacillus timonensis strain LK-DZ15 isolated from the Djurdjura Mountains in Kabylia, Algeria. Carbohydrate Research, 483:107747.