Date Log
Copyright (c) 2022 Jurnal Ilmiah Perikanan dan Kelautan
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
1. Copyright of the article is transferred to the journal, by the knowledge of the author, whilst the moral right of the publication belongs to the author.
2. The legal formal aspect of journal publication accessibility refers to Creative Commons Atribusi-Non Commercial-Share alike (CC BY-NC-SA), (https://creativecommons.org/licenses/by-nc-sa/4.0/)
3. The articles published in the journal are open access and can be used for non-commercial purposes. Other than the aims mentioned above, the editorial board is not responsible for copyright violation
The manuscript authentic and copyright statement submission can be downloaded ON THIS FORM.
Impact of Enzymatic Hydrolysis on Antioxidant Activity of Snakehead Fish (Channa striata) Head Protein Hydrolysate
Corresponding Author(s) : Masagus Muhammad Prima Putra
Jurnal Ilmiah Perikanan dan Kelautan, Vol. 15 No. 1 (2023): JURNAL ILMIAH PERIKANAN DAN KELAUTAN
Abstract
Highlight Research
- Snakehead fish head possess high protein content and potential to be used as materials for protein hydrolysate
- Snakehead fish head protein hydrolysis optimum condition were determined
- Snakehead fish head hydrolysate protein antioxidant activity were analyzed
- Snakehead fish head is potential to be used as materials for fish protein hydrolysate
Abstract
There is concern regarding the use of synthetic antioxidants which spurred the yearly increase of natural antioxidants to substitute synthetic ones. Fish protein hydrolysate (FPH), which has been reported to have potent antioxidant properties, could be utilized to solve this problem. This study aimed to utilize the by-product of snakehead fish (head) and determine the optimum hydrolysis conditions to obtain FPH with antioxidant activity. Two parameters were tested during the hydrolysis process: enzyme concentration (papain enzyme) and hydrolysis time. The optimum condition was evaluated by measuring dissolved protein, hydrolysis degree (DH), and antioxidant activity, including DPPH, ABTS, and FRAP. The optimal hydrolysis conditions were 5% enzyme concentration and 6 h of hydrolysis time at 55°C and pH 7.0. The DPPH, ABTS, and FRAP antioxidant activities were 50.70%, 66.67%, and 1.35 M Tr/mg, respectively. Based on the antioxidant activity, Snakehead fish head has the potential as a source of natural antioxidants.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Abachi, S., Bazinet, L., & Beaulieu, L. (2019). Antihypertensive and Angiotensin-I-Converting Enzyme (ACE)-inhibitory peptides from fish as potential cardioprotective compounds: A review. Marine Drugs, 17(11):1-39.
- Abraha, B., Mahmmud, A., Samuel, M., Yhdego, W., Kibrom, S., & Habtom, W. (2017). Production of fish protein hydrolysate from silver catfish (Arius thalassinus). MOJ Food Process Technol. 5(4): 328-335.
- Alemán, A., Pérez-Santín, E., Bordenave-Juchereau, S., Arnaudin, I., Gómez-Guillén, M. C., & Montero, P. (2011). Squid gelatine hydrolysates with antihypertensive, anticancer and antioxidant activity. Food Research International, 44(4):1044-1051.
- Amin, A. M., Ow, Y. W., & Faazaz, A. L. (2013). Physicochemical properties of silver catfish (Pangasius sp.) frame hydrolysate. International Food Research, 20(3):1255-1262.
- AOAC. (2005). Official methods of analysis (18th edition). Maryland: Association of Official Analytical, Chemists International.
- Atef, M., Chait, Y. A., Ojagh, S. M., Latifi, A. M., Esmaeili, M., Hammami, R., & Udenigwe, C. C. (2021). Anti-salmonella activity and peptidomic profiling of peptide fractions produced from sturgeon fish skin collagen (Huso huso) using commercial enzymes. Nutrients, 13(8):1-16.
- Baehaki, A., Widiastuti, I., Nainggolan, C., & Gofar, N. (2020). Antioxidant activities of snakehead (Channa striata) fish skin: Peptides hydrolysis using protease TP2 isolate from swamp plant silage. Potravinarstvo Slovak Journal of Food Sciences, 14:379-384.
- Baehaki, A., Shanti, D. L., & Achmad, R. R. (2015). Hidrolisis protein ikan patin menggunakan enzim papain dan aktivitas antioksidan hidrolisatnya. Jurnal Pengolahan Hasil Perikanan Indonesia, 8(3):108-117.
- Barkia, A., Bougatef, A., Khaled, H. B., & Nasri, M. (2010). Antioxidant activities of sardinille heads and or viscera protein hydrolysates prepared by enzymatic treatment. Food Biochemistry, 34(s1):303-320.
- Belkaaloul, A., Checroun, A., Ait-Abdesalam, A. I., Saidi, D., & Kherouoa, O. (2010). Growth, acidification and proteolysis performance of two co-cultures (Lactobacillus plantarum - Bifidobacterium longum and Streptococcus thermophilus Bifidobacterium longum). African Journal of Biotechnology, 9(10):1463-1469.
- Benzie, I. F. F., & Strain, J. J. (1996). The ferric reducing ability of plasma as a measure of "antioxidant power”: the FRAP assay. Analytical Biochemistry, 239(1):70-76.
- Binsan, W., Benkalul, S., Visessangum, W., Roytrakul, S., Tanaka, M., & Kishimura, H. (2008). Antioxidative activity of mungon, an extract paste, from the cephalothorax of white shrimp (Litopenaeus vannamei). Food Chemistry, 106(1):185-193.
- Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2):248-254.
- Chalamaiah, M., Jyothirmayi, T., Bhaskarachary, K., Vajreswari, A., Hemalatha, R., & Kumar, B. D. (2013). Chemical composition, molecular mass distribution and antioxidant capacity of rohu (Labeo rohita) roe (egg) protein hydrolysates prepared by gastrointestinal proteases. Food Research International, 52(1):221-229.
- Chi, C. F., Wang, B., Wang, Y. M., Zhang, B., & Deng, S. G. (2015). Isolation and characterization of three antioxidant peptides from protein hydrolysate of bluefin leatherjacket (Navodon septentrionalis) heads. Journal of Functional Foods, 12:1-10.
- Choonpicharn, S., Jaturasitha, S., Rakariyatham, N., Suree, N., & Niamsup H. (2014). Antioxidant and antihypertensive activity of gelatin hydrolysate from Nile tilapia skin. Food Science and Technology, 52(5):3134-3139.
- Da Rocha, M., Alemán, A., Baccan, G. C., López-Caballero, M. E., Gómez-Guillén, C., Montero, P., & Prentice, C. (2018). Anti-inflammatory, antioxidant, and antimicrobial effects of underutilized fish protein hydrolysate. Journal of Aquatic Food Product Technology, 27(5):592-608.
- de Camargo, A. C., Regitano-d'Arce, M. A. B., Rasera, G. B., Canniatti-Brazaca, S. G., do Prado-Silva, L., Alvarenga, V. O., Sant'Ana, A. S., & Shahidi, F. (2017). Phenolic acids and flavonoids of peanut by-products: Antioxidant capacity and antimicrobial effects. Food Chemistry, 237:538-544.
- Gallego, M., Arnal, M., Talens, P., Toldrá, F., & Mora, L. (2020). Effect of gelatin coating enriched with antioxidant tomato by-products on the quality of pork meat. Polymers, 12(5):1-18.
- Ganesh, R. J., Nazeer, R. A., & Kumar, N. S. S. (2011). Purification and identification of antioxidant peptide from black pomfret, Parastromateus niger (Bloch, 1975) viscera protein hydrolysate. Food Science and Biotechnology, 20:1087-1094.
- Guo, Y., Michael, N., Madrigal, J. F., Aguirre, C. S., & Jauregi, P. (2019). Protein hydrolysate from Pterygoplichthys disjunctivus, armoured catfish, with high antioxidant activity. Molecules, 24(8):1628.
- Halim, N. R. A., & Sarbon, N. M. (2016). A response surface approach on hydrolysis condition of eel (Monopterus sp.) protein hydrolysate with antioxidant activity. International Food Research Journal, 24(3):1081-1093.
- Hamzah, M., Shaik, M. I., & Sarbon, N. M. (2021). Effect of fish protein hydrolysate on physicochemical properties and oxidative stability of shortfin scad (Decapterus macrosoma) emulsion sausage. Food Research, 5(3):225-235.
- Haslaniza, H., Maskat, M. Y., Wan Aida, W. M., & Mamot, S. (2010). The effects of enzyme concentration, temperature and incubation time on nitrogen content and degree of hydrolysis of protein precipitate from cockle (Anadara granosa) meat wash water. International Food Research Journal, 17:147-152.
- Hsu, K. C. (2010). Purification of antioxidative peptides prepared from enzymatic hydrolysates of tuna dark muscle by-product. Food Chemistry, 122(1):42-48.
- Jideani, A. I. O., Silungwe, H., Takalani, T., Omolola, A. O., Udeh, H. O., & Anyasi, T. A. (2021). Antioxidant-rich natural fruit and vegetable products and human health. International Journal of Food Properties, 24(1):41-67.
- Karnjanapratum, S., O'Callaghan, Y. C., Benjakul, S., O'Keeffe, M. B., Fitzgerald, R. J., & O'Brien, N. M. (2017). Purification and identification of antioxidant peptides from gelatin hydrolysates of unicorn leatherjacket skin. Italian Journal of Food Science, 29(1):158-170.
- Karpińska-Tymoszczyk, M., & Draszanowska, A. (2019). The effect of natural and synthetic antioxidants and packaging type on the quality of cooked poultry products during frozen storage. Food Science and Technology International, 25(5):429-439.
- Klomklao, S., & Benjakul, S. (2016). Utilization of tuna processing byproducts: Protein hydrolysate from skipjack tuna (Katsuwonus pelamis) viscera. Food Processing and Preservation, 41(3):e12970.
- Le Vo, T. D., Nguyen, T. T. H., Phan, D. V., Nguyen, H. D. M., & Tran, H. Q. (2016). Investigation of antioxidant activity of the hydrolysate derived from Tra catfish byproducts using Alcalase® 2.4 L FG for application as a natural antioxidant ingredient. Journal of Science and Technology Development, 19(6):109-121.
- Li, X., Luo, Y., Shen, H., & You, J. (2011). Antioxidant activities and functional properties of grass carp (Ctenopharyngodon idellus) protein hydrolysates. Journal of the Science of Food and Agriculture, 92(2):292-298.
- Lin, H. C., Alashi, A. M., Aluko, R. E., Pan, B. S., & Chang, Y. W. (2017). Antihypertensive properties of tilapia (Oreochromis spp.) frame and skin enzymatic protein hydrolysates. Food & Nutrition Research, 61:1-10.
- Lu, H., Luo, Y., & Feng, L. (2014). Effects of hydrolysates from silver carp (Hypophthalmichthys molitrix) scales on rancidity stability and gel properties of fish products. Food Bioprocess Technology, 7:2178-2188.
- Memarpoor-Yazdia, M., Mahakia, H., & Zare-Zardinib, H. (2013). Antioxidant activity of protein hydrolysates and purified peptides from Zizyphus jujuba fruits. Journal of Functional Foods, 5(1):62-70.
- Ministry of Marine Affairs and Fisheries (MMAF). (2020). Langkah KKP kembangkan industri budidaya ikan gabus sebagai komoditas unggulan berbasis lokal. Accessed from kkp.go.id on April 27th, 2021.
- Mirzaei, M., Mirdamadi, S., Ehsani, M. R., & Aminlari, M. (2016). Antioxidant, ACE-inhibitory and antibacterial activities of Kluyveromyces marxianus protein hydrolysates and their peptide fractions. Functional Foods in Health and Disease, 6(7):425-439.
- Mbah, C. J., Orabueze, I., & Okorie, N. H. (2019). Antioxidants properties of natural and synthetic chemical compounds: Therapeutic effects on biological system. Acta Scientific Pharmaceutical Sciences, 3(6):28-42.
- Mutamimah, D., Ibrahim, B., & Trilaksani, W. (2018). Antioxidant Activity of protein hydrolysate produced from tuna eye (Thunnus sp.) by enzymatic hydrolysis. Jurnal Pengolahan Hasil Perikanan Indonesia, 21(3):522-531.
- Naik, A. S., Whitaker, R. D., Albrektsen, S., Solstad, R. G., Thoresen, L., & Hayes, M. (2021). Mesopelagic fish protein hydrolysates and extracts: A source of novel anti-hypertensive and anti-diabetic peptides. Frontiers in Marine Science, 8:719608.
- Noman, A., Qixing, J., Xu, Y., Ali, A. H., Al-Bukhaiti, W. Q., Abed, S. M., & Xia, W. (2019). Influence of degree of hydrolysis on chemical composition, functional properties, and antioxidant activities of chinese sturgeon (Acipenser sinensis) hydrolysates obtained by using alcalase 2.4L. Journal of Aquatic Food Product Technology, 28(6):583-597.
- Noman, A., Xu, Y., AL-Bukhaiti, W. Q., Abed, S. M., Ali, A. H., Ramadhan, A. H., & Xia, W. (2018). Influence of enzymatic hydrolysis conditions on the degree of hydrolysis and functional properties of protein hydrolysate obtained from Chinese sturgeon (Acipenser sinensis) by using papain enzyme. Process Biochemistry, 67:19-28.
- Nurilmala, M., Hizbullah, H. H., Karnia, E., Kusumaningtyas, E., & Ochiai, Y. (2020). Characterization and antioxidant activity of collagen, gelatin, and the derived peptides from yellowfin Tuna (Thunnus albacares) skin. Marine Drugs, 18(2):1-12.
- Ovissipour, M., Rasco, B., Shiroodi, S. G., Modanlow, M., Gholami, S., & Nemati, M. (2012). Antioxidant activity of protein hydrolysates from whole anchovy sprat (Clupeonella engrauliformis) prepared using endogenous enzymes and commercial proteases. Journal of the Science of Food and Agriculture, 93(7):1718-1726.
- Pan, B., Ricci, M. S., & Trout, B. L. (2010). A molecular mechanism of hydrolysis of peptide bonds at neutral pH using a model compound. Journal of Physical Chemistry, 115(19):5959-5970.
- Phanturat, P., Benjakul, S., Visessanguan, W., & Roytrakul, S. (2010). Use of pyloric caeca extract from bigeye snapper (Priacanthusmacra canthus) for the production of gelatin hydrolysate with antioxidative activity. LWT-Food Science and Technology, 43(1):86-97.
- Prastari, C., Yasni, S., & Nurilmala, M. (2017). Characteristic of snakehead fish protein that's potential as antihyperglycemic. Jurnal Pengolahan Hasil Perikanan Indonesia, 20(2):413-423.
- Prihanto, A. A., Nurdiani, R., & Bagus, A. D. (2019). Production and characteristic of fish protein hydrolysate from parrotfish (Chlorurus sordidus) head. Peer Journal, 7:e8297.
- Puspawati, N. M., Dewi, P. P., Bogoriani, N. W., & Ariati, N. K. (2020). Produksi hidrolisat protein antioksidan melalui hidrolisis enzimatik protein kulit ayam broiler dengan enzim papain. Jurnal Kimia (Journal of Chemistry), 14(2):206-212.
- Qiu, Y. T., Wang, Y. M., Yang, X. R., Zhao, Y. Q., Chi, C. F., & Wang, B. (2019). Gelatin and antioxidant peptides from gelatin hydrolysate of skipjack tuna (Katsuwonus pelamis) scales: Preparation, identification and activity evaluation. Marine Drugs, 17(10):565.
- Ramakrishnan, V. V., Ghaly, A. E., Brooks, M. S., & Budge, S. M. (2013). Extraction of proteins from mackerel fish processing waste using alcalase enzyme. Journal of Bioprocessing & Biotechniques, 3(2):1-9.
- Ranathunga, S., Rajapakse, N., & Kim, S. K. (2006). Purification and characterization of antioxidative peptide derived from muscle of conger eel (Conger myriaster). European Food Research Technology, 222: 310-315.
- Rasimi, N. A. S. M., Ishak, N. H., Mannur, I. S., & Sarbon, N. M. (2020). Optimization of enzymatic hydrolysis condition of snakehead (Channa striata) protein hydrolysate based on yield and antioxidant activity. Food Research, 4(6):2197-2206.
- Ren, J., Zhao, M., Shi, J., Wang, J., Jiang, Y., Cui, C., Kakuda, Y., & Xue, S. J. (2007). Purification and identification of antioxidant peptides from grass carp muscle hydrolysates by consecutive chromatography and electrospray ionization-mass spectrometry. Food Chemistry, 108(2):727-736.
- Rodríguez-Díaz, J. C., Kurozawa, L. E., Netto, F. M., & Hubinger, M. D. (2011). Optimization of the enzymatic hydrolysis of blue shark skin. Journal of Food Science, 76(7):C938-C949.
- Sai-Ut, S., Benjakul, S., Sumpavapol, P., & Kishimura, H. (2014). Effect of drying methods on odorous compounds and antioxidative activity of gelatin hydrolysate produced by protease from B. amyloliquefaciens H11. Drying Technology, 32(13):1552-1559.
- Sampath, K. N. S., Nazeer, R. A., & Ganesh, R. J. (2011). Purification and identification of antioxidant peptides from the skin protein hydrolysate of two marine fishes, horse mackerel (Magalaspis cordyla) and croaker (Otolithes ruber). Amino Acids, 42(5):1641-1649.
- Sandoval-Gallardo, J. M., Osuna-Ruiz, I., Martínez-Montaño, E., Hernández, C., Hurtado-Oliva, M. Á., Valdez-Ortiz, Á., & Ramírez-Pérez, J. S. (2020). Influence of enzymatic hydrolysis conditions on biochemical and antioxidant properties of pacific thread herring (Ophistonema libertate) hydrolysates. Journal of Food, 18(1):392-400.
- Shiao, W. C., Wu, T. C., Kuo, C. H., Tsai, Y. H., Tsai, M. L., Hong, Y. H., & Huang, C. Y. (2021). Physicochemical and antioxidant properties of gelatin and gelatin hydrolysates obtained from extrusion-pretreated fish (Oreochromis sp.) Scales. Marine Drugs, 19(275):1-18.
- Sila, A., & Bougatef, A. (2016). Antioxidant Peptides from marine by-products: isolation, identification and application in food systems. a review. Journal of Functional Foods, 21:10-26.
- Šližytė, R., Mozuraitytė, R., Martinez-Alvarez, O., Falch, E., Fouchereau-Peron, M., & Rustad, T. (2009). Functional, bioactive and antioxidative properties of hydrolysates obtained from cod (Gadus morhua) backbones. Process Biochemistry, 44(6):668-677.
- Šližytė, R., Rommi, K., Mozuraityte, R., Eck, P., Five, K., & Rustad, T. (2016). Bioactivities of fish protein hydrolysates from defatted salmon backbones. Biotechnology Reports, 11:99-109.
- Sohaib, M., Anjum, F. M., Sahar, A., Arshad, M. S., Rahman, U. U., Imran, A., & Hussain, S. (2017). Antioxidant proteins and peptides to enhance the oxidative stability of meat and meat products: A comprehensive review. International Journal of Food Properties, 20(11):2581-2593.
- Souissi, N., Bougatef, A., Triki-Ellouz, Y., & Nasri, M. (2007). Biochemical and functional properties of Sardinella (Sardinella aurita) by-product hydrolysates. Food Technology and Biotechnology, 45(2):187-194.
- Tavdidishvili, D., Khutsidze, T., Pkhakadze, M., Kalandia, A., & Vanidze, M. (2020). The effect of antioxidants on the quality of semi-finished minced rabbit meat. Slovak Journal of Food Sciences, 14:429-436.
- Tkaczewska, J., Borawska-Dziadkiewicz, J., Kulawik, P., Duda, I., Morawska, M., & Mickowska, B. (2019). The effects of hydrolysis condition on the antioxidant activity of protein hydrolysate from Cyprinus Carpio skin gelatin. LWT, 117:108616.
- Trang, H. T. H., & Pasuwan, P. (2018). Screening antimicrobial activity against pathogens from protein hydrolysate of rice bran and Nile Tilapia by-products. International Food Research Journal, 25(5):2157-2163.
- Verma, A. K., Chatli, M. K., Kumar, P., & Mehta, N. (2017). Antioxidant and antimicrobial activity of protein hydrolysate extracted from porcine liver. Indian Journal of Animal Sciences, 87(6):711–717.
- Verma, A. K., Chatli, M. K., Kumar, P., & Mehta, N. (2018). Effects of inclusion of porcine blood hydrolysate on physicochemical quality, oxidative and microbial stability of pork batter stored at (4+1oC). Journal of Food Science and Technology, 55(12):4758-4769.
- Villaverde, P., Lajous, M., MacDonald, C. J., Fagherazzi, G., Bonnet, F., & Boutron-Ruault, M. C. (2019). High dietary total antioxidant capacity is associated with a reduced risk of hypertension in French women. Nutrition Journal, 18(31):1-10.
- Wang, D., & Shahidi, F. (2018). Protein hydrolysate from turkey meat and optimization of its antioxidant potential by response surface methodology. Poultry Science, 97(5):1824-1831.
- Wijayanti, I., Romadhon, R., & Rianingsih, L. (2016). Karakteristik hidrolisat protein ikan bandeng (Chanos chanos Forsk) dengan konsentrasi enzim bromelin yang berbeda. Saintek Perikanan: Indonesian Journal of Fisheries Science and Technology, 11(2):129.
- Wu, H. C., Chen, H. M., & Shiau, C. Y. (2003). Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Research International, 36(9-10):949-957.
- Yathisha, U. G., Vaidya, S., & Sheshappa, M. B. (2022). Functional properties of protein hydrolyzate from ribbon fish (Lepturacanthus savala) as prepared by enzymatic hydrolysis. International Journal of Food Properties, 25(1):187-203.
- Yildirim, A., Mavi, A., Oktay, M., Kara, A. A., Algur, O. F., & Bilaloǧlu, V. (2000). Comparison of antioxidant and antimicrobial activities of tilia (Tilia argentea desf ex DC), sage (Salvia triloba L.) and black tea (Camellia sinensis) extracts. Journal of Agricultural and Food Chemistry, 48(10):5030-5034.
- Zahid, M. A., Seo, J. K., Park, J. Y., Jeong, J. Y., Jin, S. K., Park, T. S., & Yang, H. S. (2018). The effects of natural antioxidants on protein oxidation, lipid oxidation, color, and sensory attributes of beef patties during cold storage at 4℃. Food Science of Animal Resources, 38(5):1029-1042.
- Zhang, L., Zhao, G. X., Zhao, Y. Q., Qiu, Y. T., Chi, C. F., & Wang, B. (2019). Identification and active evaluation of antioxidant peptides from protein hydrolysates of skipjack tuna (Katsuwonus pelamis) head. Antioxidants, 8(8):1-16.
- Zhuang, Y., Hou, H., Zhao, X., Zhang, Z., & Li, B. (2009). Effects of collagen and collagen hydrolysate from jellyfish (Rhopilema esculentum) on mice skin photoaging induced by UV irradiation. Journal of Food Science, 74(6):H183-H188.
References
Abachi, S., Bazinet, L., & Beaulieu, L. (2019). Antihypertensive and Angiotensin-I-Converting Enzyme (ACE)-inhibitory peptides from fish as potential cardioprotective compounds: A review. Marine Drugs, 17(11):1-39.
Abraha, B., Mahmmud, A., Samuel, M., Yhdego, W., Kibrom, S., & Habtom, W. (2017). Production of fish protein hydrolysate from silver catfish (Arius thalassinus). MOJ Food Process Technol. 5(4): 328-335.
Alemán, A., Pérez-Santín, E., Bordenave-Juchereau, S., Arnaudin, I., Gómez-Guillén, M. C., & Montero, P. (2011). Squid gelatine hydrolysates with antihypertensive, anticancer and antioxidant activity. Food Research International, 44(4):1044-1051.
Amin, A. M., Ow, Y. W., & Faazaz, A. L. (2013). Physicochemical properties of silver catfish (Pangasius sp.) frame hydrolysate. International Food Research, 20(3):1255-1262.
AOAC. (2005). Official methods of analysis (18th edition). Maryland: Association of Official Analytical, Chemists International.
Atef, M., Chait, Y. A., Ojagh, S. M., Latifi, A. M., Esmaeili, M., Hammami, R., & Udenigwe, C. C. (2021). Anti-salmonella activity and peptidomic profiling of peptide fractions produced from sturgeon fish skin collagen (Huso huso) using commercial enzymes. Nutrients, 13(8):1-16.
Baehaki, A., Widiastuti, I., Nainggolan, C., & Gofar, N. (2020). Antioxidant activities of snakehead (Channa striata) fish skin: Peptides hydrolysis using protease TP2 isolate from swamp plant silage. Potravinarstvo Slovak Journal of Food Sciences, 14:379-384.
Baehaki, A., Shanti, D. L., & Achmad, R. R. (2015). Hidrolisis protein ikan patin menggunakan enzim papain dan aktivitas antioksidan hidrolisatnya. Jurnal Pengolahan Hasil Perikanan Indonesia, 8(3):108-117.
Barkia, A., Bougatef, A., Khaled, H. B., & Nasri, M. (2010). Antioxidant activities of sardinille heads and or viscera protein hydrolysates prepared by enzymatic treatment. Food Biochemistry, 34(s1):303-320.
Belkaaloul, A., Checroun, A., Ait-Abdesalam, A. I., Saidi, D., & Kherouoa, O. (2010). Growth, acidification and proteolysis performance of two co-cultures (Lactobacillus plantarum - Bifidobacterium longum and Streptococcus thermophilus Bifidobacterium longum). African Journal of Biotechnology, 9(10):1463-1469.
Benzie, I. F. F., & Strain, J. J. (1996). The ferric reducing ability of plasma as a measure of "antioxidant power”: the FRAP assay. Analytical Biochemistry, 239(1):70-76.
Binsan, W., Benkalul, S., Visessangum, W., Roytrakul, S., Tanaka, M., & Kishimura, H. (2008). Antioxidative activity of mungon, an extract paste, from the cephalothorax of white shrimp (Litopenaeus vannamei). Food Chemistry, 106(1):185-193.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2):248-254.
Chalamaiah, M., Jyothirmayi, T., Bhaskarachary, K., Vajreswari, A., Hemalatha, R., & Kumar, B. D. (2013). Chemical composition, molecular mass distribution and antioxidant capacity of rohu (Labeo rohita) roe (egg) protein hydrolysates prepared by gastrointestinal proteases. Food Research International, 52(1):221-229.
Chi, C. F., Wang, B., Wang, Y. M., Zhang, B., & Deng, S. G. (2015). Isolation and characterization of three antioxidant peptides from protein hydrolysate of bluefin leatherjacket (Navodon septentrionalis) heads. Journal of Functional Foods, 12:1-10.
Choonpicharn, S., Jaturasitha, S., Rakariyatham, N., Suree, N., & Niamsup H. (2014). Antioxidant and antihypertensive activity of gelatin hydrolysate from Nile tilapia skin. Food Science and Technology, 52(5):3134-3139.
Da Rocha, M., Alemán, A., Baccan, G. C., López-Caballero, M. E., Gómez-Guillén, C., Montero, P., & Prentice, C. (2018). Anti-inflammatory, antioxidant, and antimicrobial effects of underutilized fish protein hydrolysate. Journal of Aquatic Food Product Technology, 27(5):592-608.
de Camargo, A. C., Regitano-d'Arce, M. A. B., Rasera, G. B., Canniatti-Brazaca, S. G., do Prado-Silva, L., Alvarenga, V. O., Sant'Ana, A. S., & Shahidi, F. (2017). Phenolic acids and flavonoids of peanut by-products: Antioxidant capacity and antimicrobial effects. Food Chemistry, 237:538-544.
Gallego, M., Arnal, M., Talens, P., Toldrá, F., & Mora, L. (2020). Effect of gelatin coating enriched with antioxidant tomato by-products on the quality of pork meat. Polymers, 12(5):1-18.
Ganesh, R. J., Nazeer, R. A., & Kumar, N. S. S. (2011). Purification and identification of antioxidant peptide from black pomfret, Parastromateus niger (Bloch, 1975) viscera protein hydrolysate. Food Science and Biotechnology, 20:1087-1094.
Guo, Y., Michael, N., Madrigal, J. F., Aguirre, C. S., & Jauregi, P. (2019). Protein hydrolysate from Pterygoplichthys disjunctivus, armoured catfish, with high antioxidant activity. Molecules, 24(8):1628.
Halim, N. R. A., & Sarbon, N. M. (2016). A response surface approach on hydrolysis condition of eel (Monopterus sp.) protein hydrolysate with antioxidant activity. International Food Research Journal, 24(3):1081-1093.
Hamzah, M., Shaik, M. I., & Sarbon, N. M. (2021). Effect of fish protein hydrolysate on physicochemical properties and oxidative stability of shortfin scad (Decapterus macrosoma) emulsion sausage. Food Research, 5(3):225-235.
Haslaniza, H., Maskat, M. Y., Wan Aida, W. M., & Mamot, S. (2010). The effects of enzyme concentration, temperature and incubation time on nitrogen content and degree of hydrolysis of protein precipitate from cockle (Anadara granosa) meat wash water. International Food Research Journal, 17:147-152.
Hsu, K. C. (2010). Purification of antioxidative peptides prepared from enzymatic hydrolysates of tuna dark muscle by-product. Food Chemistry, 122(1):42-48.
Jideani, A. I. O., Silungwe, H., Takalani, T., Omolola, A. O., Udeh, H. O., & Anyasi, T. A. (2021). Antioxidant-rich natural fruit and vegetable products and human health. International Journal of Food Properties, 24(1):41-67.
Karnjanapratum, S., O'Callaghan, Y. C., Benjakul, S., O'Keeffe, M. B., Fitzgerald, R. J., & O'Brien, N. M. (2017). Purification and identification of antioxidant peptides from gelatin hydrolysates of unicorn leatherjacket skin. Italian Journal of Food Science, 29(1):158-170.
Karpińska-Tymoszczyk, M., & Draszanowska, A. (2019). The effect of natural and synthetic antioxidants and packaging type on the quality of cooked poultry products during frozen storage. Food Science and Technology International, 25(5):429-439.
Klomklao, S., & Benjakul, S. (2016). Utilization of tuna processing byproducts: Protein hydrolysate from skipjack tuna (Katsuwonus pelamis) viscera. Food Processing and Preservation, 41(3):e12970.
Le Vo, T. D., Nguyen, T. T. H., Phan, D. V., Nguyen, H. D. M., & Tran, H. Q. (2016). Investigation of antioxidant activity of the hydrolysate derived from Tra catfish byproducts using Alcalase® 2.4 L FG for application as a natural antioxidant ingredient. Journal of Science and Technology Development, 19(6):109-121.
Li, X., Luo, Y., Shen, H., & You, J. (2011). Antioxidant activities and functional properties of grass carp (Ctenopharyngodon idellus) protein hydrolysates. Journal of the Science of Food and Agriculture, 92(2):292-298.
Lin, H. C., Alashi, A. M., Aluko, R. E., Pan, B. S., & Chang, Y. W. (2017). Antihypertensive properties of tilapia (Oreochromis spp.) frame and skin enzymatic protein hydrolysates. Food & Nutrition Research, 61:1-10.
Lu, H., Luo, Y., & Feng, L. (2014). Effects of hydrolysates from silver carp (Hypophthalmichthys molitrix) scales on rancidity stability and gel properties of fish products. Food Bioprocess Technology, 7:2178-2188.
Memarpoor-Yazdia, M., Mahakia, H., & Zare-Zardinib, H. (2013). Antioxidant activity of protein hydrolysates and purified peptides from Zizyphus jujuba fruits. Journal of Functional Foods, 5(1):62-70.
Ministry of Marine Affairs and Fisheries (MMAF). (2020). Langkah KKP kembangkan industri budidaya ikan gabus sebagai komoditas unggulan berbasis lokal. Accessed from kkp.go.id on April 27th, 2021.
Mirzaei, M., Mirdamadi, S., Ehsani, M. R., & Aminlari, M. (2016). Antioxidant, ACE-inhibitory and antibacterial activities of Kluyveromyces marxianus protein hydrolysates and their peptide fractions. Functional Foods in Health and Disease, 6(7):425-439.
Mbah, C. J., Orabueze, I., & Okorie, N. H. (2019). Antioxidants properties of natural and synthetic chemical compounds: Therapeutic effects on biological system. Acta Scientific Pharmaceutical Sciences, 3(6):28-42.
Mutamimah, D., Ibrahim, B., & Trilaksani, W. (2018). Antioxidant Activity of protein hydrolysate produced from tuna eye (Thunnus sp.) by enzymatic hydrolysis. Jurnal Pengolahan Hasil Perikanan Indonesia, 21(3):522-531.
Naik, A. S., Whitaker, R. D., Albrektsen, S., Solstad, R. G., Thoresen, L., & Hayes, M. (2021). Mesopelagic fish protein hydrolysates and extracts: A source of novel anti-hypertensive and anti-diabetic peptides. Frontiers in Marine Science, 8:719608.
Noman, A., Qixing, J., Xu, Y., Ali, A. H., Al-Bukhaiti, W. Q., Abed, S. M., & Xia, W. (2019). Influence of degree of hydrolysis on chemical composition, functional properties, and antioxidant activities of chinese sturgeon (Acipenser sinensis) hydrolysates obtained by using alcalase 2.4L. Journal of Aquatic Food Product Technology, 28(6):583-597.
Noman, A., Xu, Y., AL-Bukhaiti, W. Q., Abed, S. M., Ali, A. H., Ramadhan, A. H., & Xia, W. (2018). Influence of enzymatic hydrolysis conditions on the degree of hydrolysis and functional properties of protein hydrolysate obtained from Chinese sturgeon (Acipenser sinensis) by using papain enzyme. Process Biochemistry, 67:19-28.
Nurilmala, M., Hizbullah, H. H., Karnia, E., Kusumaningtyas, E., & Ochiai, Y. (2020). Characterization and antioxidant activity of collagen, gelatin, and the derived peptides from yellowfin Tuna (Thunnus albacares) skin. Marine Drugs, 18(2):1-12.
Ovissipour, M., Rasco, B., Shiroodi, S. G., Modanlow, M., Gholami, S., & Nemati, M. (2012). Antioxidant activity of protein hydrolysates from whole anchovy sprat (Clupeonella engrauliformis) prepared using endogenous enzymes and commercial proteases. Journal of the Science of Food and Agriculture, 93(7):1718-1726.
Pan, B., Ricci, M. S., & Trout, B. L. (2010). A molecular mechanism of hydrolysis of peptide bonds at neutral pH using a model compound. Journal of Physical Chemistry, 115(19):5959-5970.
Phanturat, P., Benjakul, S., Visessanguan, W., & Roytrakul, S. (2010). Use of pyloric caeca extract from bigeye snapper (Priacanthusmacra canthus) for the production of gelatin hydrolysate with antioxidative activity. LWT-Food Science and Technology, 43(1):86-97.
Prastari, C., Yasni, S., & Nurilmala, M. (2017). Characteristic of snakehead fish protein that's potential as antihyperglycemic. Jurnal Pengolahan Hasil Perikanan Indonesia, 20(2):413-423.
Prihanto, A. A., Nurdiani, R., & Bagus, A. D. (2019). Production and characteristic of fish protein hydrolysate from parrotfish (Chlorurus sordidus) head. Peer Journal, 7:e8297.
Puspawati, N. M., Dewi, P. P., Bogoriani, N. W., & Ariati, N. K. (2020). Produksi hidrolisat protein antioksidan melalui hidrolisis enzimatik protein kulit ayam broiler dengan enzim papain. Jurnal Kimia (Journal of Chemistry), 14(2):206-212.
Qiu, Y. T., Wang, Y. M., Yang, X. R., Zhao, Y. Q., Chi, C. F., & Wang, B. (2019). Gelatin and antioxidant peptides from gelatin hydrolysate of skipjack tuna (Katsuwonus pelamis) scales: Preparation, identification and activity evaluation. Marine Drugs, 17(10):565.
Ramakrishnan, V. V., Ghaly, A. E., Brooks, M. S., & Budge, S. M. (2013). Extraction of proteins from mackerel fish processing waste using alcalase enzyme. Journal of Bioprocessing & Biotechniques, 3(2):1-9.
Ranathunga, S., Rajapakse, N., & Kim, S. K. (2006). Purification and characterization of antioxidative peptide derived from muscle of conger eel (Conger myriaster). European Food Research Technology, 222: 310-315.
Rasimi, N. A. S. M., Ishak, N. H., Mannur, I. S., & Sarbon, N. M. (2020). Optimization of enzymatic hydrolysis condition of snakehead (Channa striata) protein hydrolysate based on yield and antioxidant activity. Food Research, 4(6):2197-2206.
Ren, J., Zhao, M., Shi, J., Wang, J., Jiang, Y., Cui, C., Kakuda, Y., & Xue, S. J. (2007). Purification and identification of antioxidant peptides from grass carp muscle hydrolysates by consecutive chromatography and electrospray ionization-mass spectrometry. Food Chemistry, 108(2):727-736.
Rodríguez-Díaz, J. C., Kurozawa, L. E., Netto, F. M., & Hubinger, M. D. (2011). Optimization of the enzymatic hydrolysis of blue shark skin. Journal of Food Science, 76(7):C938-C949.
Sai-Ut, S., Benjakul, S., Sumpavapol, P., & Kishimura, H. (2014). Effect of drying methods on odorous compounds and antioxidative activity of gelatin hydrolysate produced by protease from B. amyloliquefaciens H11. Drying Technology, 32(13):1552-1559.
Sampath, K. N. S., Nazeer, R. A., & Ganesh, R. J. (2011). Purification and identification of antioxidant peptides from the skin protein hydrolysate of two marine fishes, horse mackerel (Magalaspis cordyla) and croaker (Otolithes ruber). Amino Acids, 42(5):1641-1649.
Sandoval-Gallardo, J. M., Osuna-Ruiz, I., Martínez-Montaño, E., Hernández, C., Hurtado-Oliva, M. Á., Valdez-Ortiz, Á., & Ramírez-Pérez, J. S. (2020). Influence of enzymatic hydrolysis conditions on biochemical and antioxidant properties of pacific thread herring (Ophistonema libertate) hydrolysates. Journal of Food, 18(1):392-400.
Shiao, W. C., Wu, T. C., Kuo, C. H., Tsai, Y. H., Tsai, M. L., Hong, Y. H., & Huang, C. Y. (2021). Physicochemical and antioxidant properties of gelatin and gelatin hydrolysates obtained from extrusion-pretreated fish (Oreochromis sp.) Scales. Marine Drugs, 19(275):1-18.
Sila, A., & Bougatef, A. (2016). Antioxidant Peptides from marine by-products: isolation, identification and application in food systems. a review. Journal of Functional Foods, 21:10-26.
Šližytė, R., Mozuraitytė, R., Martinez-Alvarez, O., Falch, E., Fouchereau-Peron, M., & Rustad, T. (2009). Functional, bioactive and antioxidative properties of hydrolysates obtained from cod (Gadus morhua) backbones. Process Biochemistry, 44(6):668-677.
Šližytė, R., Rommi, K., Mozuraityte, R., Eck, P., Five, K., & Rustad, T. (2016). Bioactivities of fish protein hydrolysates from defatted salmon backbones. Biotechnology Reports, 11:99-109.
Sohaib, M., Anjum, F. M., Sahar, A., Arshad, M. S., Rahman, U. U., Imran, A., & Hussain, S. (2017). Antioxidant proteins and peptides to enhance the oxidative stability of meat and meat products: A comprehensive review. International Journal of Food Properties, 20(11):2581-2593.
Souissi, N., Bougatef, A., Triki-Ellouz, Y., & Nasri, M. (2007). Biochemical and functional properties of Sardinella (Sardinella aurita) by-product hydrolysates. Food Technology and Biotechnology, 45(2):187-194.
Tavdidishvili, D., Khutsidze, T., Pkhakadze, M., Kalandia, A., & Vanidze, M. (2020). The effect of antioxidants on the quality of semi-finished minced rabbit meat. Slovak Journal of Food Sciences, 14:429-436.
Tkaczewska, J., Borawska-Dziadkiewicz, J., Kulawik, P., Duda, I., Morawska, M., & Mickowska, B. (2019). The effects of hydrolysis condition on the antioxidant activity of protein hydrolysate from Cyprinus Carpio skin gelatin. LWT, 117:108616.
Trang, H. T. H., & Pasuwan, P. (2018). Screening antimicrobial activity against pathogens from protein hydrolysate of rice bran and Nile Tilapia by-products. International Food Research Journal, 25(5):2157-2163.
Verma, A. K., Chatli, M. K., Kumar, P., & Mehta, N. (2017). Antioxidant and antimicrobial activity of protein hydrolysate extracted from porcine liver. Indian Journal of Animal Sciences, 87(6):711–717.
Verma, A. K., Chatli, M. K., Kumar, P., & Mehta, N. (2018). Effects of inclusion of porcine blood hydrolysate on physicochemical quality, oxidative and microbial stability of pork batter stored at (4+1oC). Journal of Food Science and Technology, 55(12):4758-4769.
Villaverde, P., Lajous, M., MacDonald, C. J., Fagherazzi, G., Bonnet, F., & Boutron-Ruault, M. C. (2019). High dietary total antioxidant capacity is associated with a reduced risk of hypertension in French women. Nutrition Journal, 18(31):1-10.
Wang, D., & Shahidi, F. (2018). Protein hydrolysate from turkey meat and optimization of its antioxidant potential by response surface methodology. Poultry Science, 97(5):1824-1831.
Wijayanti, I., Romadhon, R., & Rianingsih, L. (2016). Karakteristik hidrolisat protein ikan bandeng (Chanos chanos Forsk) dengan konsentrasi enzim bromelin yang berbeda. Saintek Perikanan: Indonesian Journal of Fisheries Science and Technology, 11(2):129.
Wu, H. C., Chen, H. M., & Shiau, C. Y. (2003). Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Research International, 36(9-10):949-957.
Yathisha, U. G., Vaidya, S., & Sheshappa, M. B. (2022). Functional properties of protein hydrolyzate from ribbon fish (Lepturacanthus savala) as prepared by enzymatic hydrolysis. International Journal of Food Properties, 25(1):187-203.
Yildirim, A., Mavi, A., Oktay, M., Kara, A. A., Algur, O. F., & Bilaloǧlu, V. (2000). Comparison of antioxidant and antimicrobial activities of tilia (Tilia argentea desf ex DC), sage (Salvia triloba L.) and black tea (Camellia sinensis) extracts. Journal of Agricultural and Food Chemistry, 48(10):5030-5034.
Zahid, M. A., Seo, J. K., Park, J. Y., Jeong, J. Y., Jin, S. K., Park, T. S., & Yang, H. S. (2018). The effects of natural antioxidants on protein oxidation, lipid oxidation, color, and sensory attributes of beef patties during cold storage at 4℃. Food Science of Animal Resources, 38(5):1029-1042.
Zhang, L., Zhao, G. X., Zhao, Y. Q., Qiu, Y. T., Chi, C. F., & Wang, B. (2019). Identification and active evaluation of antioxidant peptides from protein hydrolysates of skipjack tuna (Katsuwonus pelamis) head. Antioxidants, 8(8):1-16.
Zhuang, Y., Hou, H., Zhao, X., Zhang, Z., & Li, B. (2009). Effects of collagen and collagen hydrolysate from jellyfish (Rhopilema esculentum) on mice skin photoaging induced by UV irradiation. Journal of Food Science, 74(6):H183-H188.