Date Log
Copyright (c) 2022 Jurnal Ilmiah Perikanan dan Kelautan
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
1. Copyright of the article is transferred to the journal, by the knowledge of the author, whilst the moral right of the publication belongs to the author.
2. The legal formal aspect of journal publication accessibility refers to Creative Commons Atribusi-Non Commercial-Share alike (CC BY-NC-SA), (https://creativecommons.org/licenses/by-nc-sa/4.0/)
3. The articles published in the journal are open access and can be used for non-commercial purposes. Other than the aims mentioned above, the editorial board is not responsible for copyright violation
The manuscript authentic and copyright statement submission can be downloaded ON THIS FORM.
Nano-chitosan Spray as a Preservative and Food Security of Fishery Products in The Middle of the Covid-19 Pandemic
Corresponding Author(s) : Dion Saputra
Jurnal Ilmiah Perikanan dan Kelautan, Vol. 14 No. 1 (2022): JURNAL ILMIAH PERIKANAN DAN KELAUTAN
Abstract
Highlight Research
The author mentioned 2 highlights from their results research
- Nano-chitosan has the best susceptibility to bacterial strains of E. coli, S. enteritidis, L. monocytogenes, B. cereus and S. aureus.
- Nano-chitosan showed higher degree of inhibition than that done by chitosan.
Abstract
The COVID-19 pandemic has impacted the fisheries sector, a decline in exports and fishermen's income caused by the disconnection of the marketing chain due to lockdown implementation in several export destination countries. Fish is a source of protein and as perishable goods, it experiences quality damage due to spoilage, commonly caused by hampered distribution of catches. Natural preservatives are needed to preserve catch so it won't get spoiled and can be accepted by consumers in suitable conditions for consumption. This study aims to evaluate the particle size of nano-chitosan and determine the effectiveness of nano-chitosan spray with different concentrations as a natural preservative in caught fish. This research method begins with making chitosan through 3 stages: demineralization, deproteination, and deacetylation. Chitosan was made into nano-chitosan with various concentrations of 3:1, 4:1, and 5:1 using ionic gelation. Nano-chitosan underwent several tests, including PSA, antibacterial activity by disc diffusion, organoleptic, and the effectiveness of preservatives. Antibacterial activity of nano-chitosan was able to inhibit Bacillus subtilis at three different concentrations, the potential to inhibit Escherichia coli was optimal at 5:1 treatment. The effectiveness of nano-chitosan preservative bacteria inhibition at three different concentrations proved to be sufficient to be used to extend shelf life and ensure the safety and quality of fishery products. The best concentration of nano-chitosan was 3:1 treatment. Nano-chitosan spray from crab shell waste has good antibacterial activity and preservative effectiveness. It could serve as an antibacterial agent and natural preservative for fishery products during the COVID-19 pandemic.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Abdeltwab, W. M., Abdelaliem, Y. F., Metry, W. A., & Eldeghedy, M. (2019). Antimicrobial effect of chitosan and nano-chitosan against some pathogens and spoilage microorganisms. Journal of Advanced Laboratory Research in Biology, 10(1):8-15.
- Arsyi, N. Z., Nurjannah, E., Nurahlina, D., & Budiyati, E. (2018). Karakterisasi nano kitosan dari cangkang kerang hijau dengan metode gelasi ionik. Jurnal Teknologi Bahan Alam, 2(2):106-111.
- Bajpai, V. K., Kamle, M., Shukla, S., Mahato, D. K., Chandra, P., Hwang, S. K., Kumar, P., Huh, Y. S., & Han, Y. K. (2018). Prospects of using nanotechnology for food preservation, safety, and security. Journal of Food and Drug Analysis, 26(4):1201-1214.
- Bambang, A. G., Fatimawali, dan Kojang, K. S. (2014). Analisis cemaran bakteri coliform dan identifikasi Escherichia coli pada air isi ulang dari depot di Kota Manado. Pharmacon, 3(3):325-334.
- Bhattacharjee, B., Mishra, V. K., Rai, S. B., Parkash, O., & Kumar, D. (2019). Structure of apatite nanoparticles derived from marine animal (crab) shells: An environment-friendly and cost-effective novel approach to recycle seafood waste. ACS Omega, 4(7):12753-12758.
- Cahyaningsih, E., Megawati, F., & Artini, N. P. E. (2021). Uji efektivitas ekstrak daun pare (Momordica charantia L.) sebagai bahan pengawet alami buah tomat. Jurnal Ilmiah Medicamento, 7(1):41-46.
- Desvita, H., Faisal, M., Mahidin, & Suhendrayatna. (2020). Preservation of meatballs with edible coating of chitosan dissolved in ricehull-based liquid smoke. 6(10):1-6.
- Dwivedi, S., Prajpati, P., Vyas, N., Malviya, S., & Kharia, A. (2017). A review on food preservation: methods, harmful effects and better alternatives. Asian Journal of Pharmacy and Pharmacology, 3(6):193-199.
- Food and Agriculture Organization (FAO). (2020). The impact of COVID-19 on fisheries and aquaculture food systems possible responses.
- Goy, R. C., Britto, D. D., & Assis, O.B.G. (2009). A review of the antimicrobial activity of chitosan. Polímeros: Ciíªncia e Tecnologia, 19(3):241-247.
- Guzman, M. G., Dille, J., & Godet, S. (2012). Synthesis and antibacterial activity of silver nanoparticles against Gram-positive and Gram-negative bacteria. Nanomedicine: Nanotechnology, Biology, and Medicine, 8(1):37-45.
- Krisnafi, Y., Yusrizal, Halim, S., Santoso, H., Suharto, Waluyo, A. S., Kusdinar, A., Danapraja, S., Pickassa, F. I., Alamsah, S., & Fadly, Z. R. (2019). CPUE analysis of crab resources in Karangantu, Serang Banten, Indonesia. Bioflux, 12(2):610-617.
- Lestari, S. D., Baehaki, A., & Meliza, R. (2019). Aktivitas antibakteri kompleks kitosan-monosakarida terhadap patogen dalam surimi ikan gabus sebagai model matriks pangan. Jurnal Pengolahan Hasil Perikanan Indonesia, 22(1):80-88.
- Li, B., Wu, X., Bao, B., Guo, R., & Wu, W. (2021). Evaluation of α-chitosan from crab shell and β-chitosan from squid gladius based on biochemistry performance. Applied Science, 11(7):1-19.
- Lourenco, S. C., Martins, M. M., & Alves, V. D. 2019. Antioxidants of natural plant origins: From sources to food industry applications. Molecules, 24(22):1-25.
- Nguyen, V. B., Nguyen, D. N., Nguyen, A. D., Ngo, V. A., Ton, T. Q., Doan, C. T., Pham, T. P., Tran, T. P. H., & Wang, S. (2020). Utilization of crab waste for cost-effective bioproduction of prodigiosin. Marine Drugs, 18(11):1-13.
- Nurhayati, T., Abdullah, A. & Sari, S. N. (2019). Penentuan formaldehid ikan beloso (Saurida tumbil) selama penyimpanan beku. Jurnal Pengolahan Hasil Perikanan Indonesia, 22(2):236-245.
- Prasetiowati, A. L., Prasetya, A. T., & Wardani, S. (2018). Sintesis nanopartikel perak dengan bioreduktor ekstrak daun belimbing wuluh (Averrhoa bilimbi L.) uji aktivitasnya sebagai antibakteri. Indonesian Journal of Chemical Science, 7(2):160-166.
- Qonintannisa, S., Fadli, A., & Sunarno, S. (2020). Sintesis nanokitosan dengan metode gelasi ionik menggunakan pelarut asam asetat dengan variasi konsentrasi kitosan. Jurnal Online Mahasiswa Fakultas Teknik, 7(2):1-4.
- Ramezani, Zahra., M. Zarei., & Raminnejad, N. (2015). Comparing the effectiveness of chitosan and nanochitosan coatings on the quality of refrigerated silver carp fillets. Food Control, (51):43-48.
- Sari, L. R., Sumpono, & Elvinawati. (2019). Uji efektifitas asap cair cangkang buah karet (Hevea braziliensis) sebagai antibakteri Bacillus subtilis. Jurnal Pendidikan dan Ilmu Kimia, 3(1):34-40.
- Sarwono, R. (2010). Pemanfaatan kitin/kitosan sebagai bahan anti mikroba. Jurnal Kimia Terapan Indonesia, 12(1):32-38.
- Seabra, A. B., Haddad, P., & Duran, N. (2013). Biogenic of nanostructural iron compounds application and perspektive. IET Nanobiotechnology, 7:90-99.
- See, A. S., Salleh, A. B., Bakar, F. A., & Heng, N. A. (2010). Risk and health effect of boric acid. American Journal of Applied Sciences, 7(5):620-627.
- Sumampoue, O. J. (2018). Uji sensitivitas antibiotik terhadap bakteri Escherichia coli penyebab diare balita di Kota Manado. Journal of Current Pharmaceutical Sciences, 2(1):104-110.
- Supriyantini, E., Yulianto, B., Ridlo, A., Sedjati, S., & Nainggolan, A. C. (2018). Pemanfaatan chitosan dari limbah cangkang rajungan (Portunus pelagicus) sebagai adsorben logam timbal (Pb). Jurnal Kelautan Tropis, 21(1):23-28.
- Syafitri, S., Metusalach, M., & Fahrul, F. (2016). Studi kualitas ikan segar secara organoleptik yang dipasarkan di Kabupaten Jeneponto. Jurnal IPTEKS Pemanfaatan Sumberdaya Perikanan, 3(6):544-552.
- Thulasiraman, V., M. S. Giri N., & Anjineyulu K. (2021). Need for a balance between short food supply chains and integrated food processing sectors: COVID-19 takeaways from India. Journal of Food Science and Technology, 58(10):3667-3675.
- Triastiningrum, C. D. & Purnomo A. (2016). Perbandingan kemampuan kitosan dari limbah kulit udang dengan aluminium sulfat untuk menurunkan kekeruhan air dari outlet bak prasedimentasi IPAM Ngagel II. Jurnal Teknik ITS, 5(2):272-278.
- Utama, C., Nurwidiyanto, Baehaki, F., & Ekawati, S. (2021). Analysis of formaldehyde content in salted fish at Ciroyom market, Bandung. Journal of Sustainability Science and Technology, 1(1):35-43.
- Vilar, J. J .C., Ribeaux, D. R., Alves da Silva, C. A., Campos-Takaki, D., & Maria, G. (2016). Physicochemical and antibacterial properties of chitosan extracted from waste shrimp shells. International Journal of Microbiology, 1(1):1-7.
- Xie, W., Zou, C., Tang, Z., Fu, H., Zhu, X., Kuang, J., & Deng, Y. (2017). Well-crystallized borax prepared from boron-bearing tailings by sodium roasting and pressure leaching. RSC Advances, 7(49):31042-31048.
References
Abdeltwab, W. M., Abdelaliem, Y. F., Metry, W. A., & Eldeghedy, M. (2019). Antimicrobial effect of chitosan and nano-chitosan against some pathogens and spoilage microorganisms. Journal of Advanced Laboratory Research in Biology, 10(1):8-15.
Arsyi, N. Z., Nurjannah, E., Nurahlina, D., & Budiyati, E. (2018). Karakterisasi nano kitosan dari cangkang kerang hijau dengan metode gelasi ionik. Jurnal Teknologi Bahan Alam, 2(2):106-111.
Bajpai, V. K., Kamle, M., Shukla, S., Mahato, D. K., Chandra, P., Hwang, S. K., Kumar, P., Huh, Y. S., & Han, Y. K. (2018). Prospects of using nanotechnology for food preservation, safety, and security. Journal of Food and Drug Analysis, 26(4):1201-1214.
Bambang, A. G., Fatimawali, dan Kojang, K. S. (2014). Analisis cemaran bakteri coliform dan identifikasi Escherichia coli pada air isi ulang dari depot di Kota Manado. Pharmacon, 3(3):325-334.
Bhattacharjee, B., Mishra, V. K., Rai, S. B., Parkash, O., & Kumar, D. (2019). Structure of apatite nanoparticles derived from marine animal (crab) shells: An environment-friendly and cost-effective novel approach to recycle seafood waste. ACS Omega, 4(7):12753-12758.
Cahyaningsih, E., Megawati, F., & Artini, N. P. E. (2021). Uji efektivitas ekstrak daun pare (Momordica charantia L.) sebagai bahan pengawet alami buah tomat. Jurnal Ilmiah Medicamento, 7(1):41-46.
Desvita, H., Faisal, M., Mahidin, & Suhendrayatna. (2020). Preservation of meatballs with edible coating of chitosan dissolved in ricehull-based liquid smoke. 6(10):1-6.
Dwivedi, S., Prajpati, P., Vyas, N., Malviya, S., & Kharia, A. (2017). A review on food preservation: methods, harmful effects and better alternatives. Asian Journal of Pharmacy and Pharmacology, 3(6):193-199.
Food and Agriculture Organization (FAO). (2020). The impact of COVID-19 on fisheries and aquaculture food systems possible responses.
Goy, R. C., Britto, D. D., & Assis, O.B.G. (2009). A review of the antimicrobial activity of chitosan. Polímeros: Ciíªncia e Tecnologia, 19(3):241-247.
Guzman, M. G., Dille, J., & Godet, S. (2012). Synthesis and antibacterial activity of silver nanoparticles against Gram-positive and Gram-negative bacteria. Nanomedicine: Nanotechnology, Biology, and Medicine, 8(1):37-45.
Krisnafi, Y., Yusrizal, Halim, S., Santoso, H., Suharto, Waluyo, A. S., Kusdinar, A., Danapraja, S., Pickassa, F. I., Alamsah, S., & Fadly, Z. R. (2019). CPUE analysis of crab resources in Karangantu, Serang Banten, Indonesia. Bioflux, 12(2):610-617.
Lestari, S. D., Baehaki, A., & Meliza, R. (2019). Aktivitas antibakteri kompleks kitosan-monosakarida terhadap patogen dalam surimi ikan gabus sebagai model matriks pangan. Jurnal Pengolahan Hasil Perikanan Indonesia, 22(1):80-88.
Li, B., Wu, X., Bao, B., Guo, R., & Wu, W. (2021). Evaluation of α-chitosan from crab shell and β-chitosan from squid gladius based on biochemistry performance. Applied Science, 11(7):1-19.
Lourenco, S. C., Martins, M. M., & Alves, V. D. 2019. Antioxidants of natural plant origins: From sources to food industry applications. Molecules, 24(22):1-25.
Nguyen, V. B., Nguyen, D. N., Nguyen, A. D., Ngo, V. A., Ton, T. Q., Doan, C. T., Pham, T. P., Tran, T. P. H., & Wang, S. (2020). Utilization of crab waste for cost-effective bioproduction of prodigiosin. Marine Drugs, 18(11):1-13.
Nurhayati, T., Abdullah, A. & Sari, S. N. (2019). Penentuan formaldehid ikan beloso (Saurida tumbil) selama penyimpanan beku. Jurnal Pengolahan Hasil Perikanan Indonesia, 22(2):236-245.
Prasetiowati, A. L., Prasetya, A. T., & Wardani, S. (2018). Sintesis nanopartikel perak dengan bioreduktor ekstrak daun belimbing wuluh (Averrhoa bilimbi L.) uji aktivitasnya sebagai antibakteri. Indonesian Journal of Chemical Science, 7(2):160-166.
Qonintannisa, S., Fadli, A., & Sunarno, S. (2020). Sintesis nanokitosan dengan metode gelasi ionik menggunakan pelarut asam asetat dengan variasi konsentrasi kitosan. Jurnal Online Mahasiswa Fakultas Teknik, 7(2):1-4.
Ramezani, Zahra., M. Zarei., & Raminnejad, N. (2015). Comparing the effectiveness of chitosan and nanochitosan coatings on the quality of refrigerated silver carp fillets. Food Control, (51):43-48.
Sari, L. R., Sumpono, & Elvinawati. (2019). Uji efektifitas asap cair cangkang buah karet (Hevea braziliensis) sebagai antibakteri Bacillus subtilis. Jurnal Pendidikan dan Ilmu Kimia, 3(1):34-40.
Sarwono, R. (2010). Pemanfaatan kitin/kitosan sebagai bahan anti mikroba. Jurnal Kimia Terapan Indonesia, 12(1):32-38.
Seabra, A. B., Haddad, P., & Duran, N. (2013). Biogenic of nanostructural iron compounds application and perspektive. IET Nanobiotechnology, 7:90-99.
See, A. S., Salleh, A. B., Bakar, F. A., & Heng, N. A. (2010). Risk and health effect of boric acid. American Journal of Applied Sciences, 7(5):620-627.
Sumampoue, O. J. (2018). Uji sensitivitas antibiotik terhadap bakteri Escherichia coli penyebab diare balita di Kota Manado. Journal of Current Pharmaceutical Sciences, 2(1):104-110.
Supriyantini, E., Yulianto, B., Ridlo, A., Sedjati, S., & Nainggolan, A. C. (2018). Pemanfaatan chitosan dari limbah cangkang rajungan (Portunus pelagicus) sebagai adsorben logam timbal (Pb). Jurnal Kelautan Tropis, 21(1):23-28.
Syafitri, S., Metusalach, M., & Fahrul, F. (2016). Studi kualitas ikan segar secara organoleptik yang dipasarkan di Kabupaten Jeneponto. Jurnal IPTEKS Pemanfaatan Sumberdaya Perikanan, 3(6):544-552.
Thulasiraman, V., M. S. Giri N., & Anjineyulu K. (2021). Need for a balance between short food supply chains and integrated food processing sectors: COVID-19 takeaways from India. Journal of Food Science and Technology, 58(10):3667-3675.
Triastiningrum, C. D. & Purnomo A. (2016). Perbandingan kemampuan kitosan dari limbah kulit udang dengan aluminium sulfat untuk menurunkan kekeruhan air dari outlet bak prasedimentasi IPAM Ngagel II. Jurnal Teknik ITS, 5(2):272-278.
Utama, C., Nurwidiyanto, Baehaki, F., & Ekawati, S. (2021). Analysis of formaldehyde content in salted fish at Ciroyom market, Bandung. Journal of Sustainability Science and Technology, 1(1):35-43.
Vilar, J. J .C., Ribeaux, D. R., Alves da Silva, C. A., Campos-Takaki, D., & Maria, G. (2016). Physicochemical and antibacterial properties of chitosan extracted from waste shrimp shells. International Journal of Microbiology, 1(1):1-7.
Xie, W., Zou, C., Tang, Z., Fu, H., Zhu, X., Kuang, J., & Deng, Y. (2017). Well-crystallized borax prepared from boron-bearing tailings by sodium roasting and pressure leaching. RSC Advances, 7(49):31042-31048.