Date Log
Copyright (c) 2022 Jurnal Ilmiah Perikanan dan Kelautan
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
1. Copyright of the article is transferred to the journal, by the knowledge of the author, whilst the moral right of the publication belongs to the author.
2. The legal formal aspect of journal publication accessibility refers to Creative Commons Atribusi-Non Commercial-Share alike (CC BY-NC-SA), (https://creativecommons.org/licenses/by-nc-sa/4.0/)
3. The articles published in the journal are open access and can be used for non-commercial purposes. Other than the aims mentioned above, the editorial board is not responsible for copyright violation
The manuscript authentic and copyright statement submission can be downloaded ON THIS FORM.
Effect of Aquaculture Wastewater And Zarrouk in Increasing Biomass, Protein, and Carotenoids levels of Spirulina platensis
Corresponding Author(s) : Yenny Risjani
Jurnal Ilmiah Perikanan dan Kelautan, Vol. 15 No. 2 (2023): JURNAL ILMIAH PERIKANAN DAN KELAUTAN
Abstract
Highlight Research
- S. platensis has been analyzed for its productivity.
- Analysis of the productivity of S. platensis on the use of fish culture wastewater media.
- S. platensis production can be increased by aquaculture wastewater.
- Aquaculture wastewater enhances the production of cell density, SGR, biomass, protein, and carotenoid of S. platensis.
Abstract
Increased productivity of Spirulina sp. in the form of high protein, carotenoids, and biomass content can be achieved by improving its nutrient supply. Inorganic fertilizers are nutrient sources, which are generally used in the culture of this organism on laboratory and industrial scale, but there are several drawbacks, including their high costs and limited availability. Several studies have also reported the use of zarrouk fertilizer as a standard culture medium for Spirulina platensis. Therefore, this study aims to determine the effect and the best concentration of fish culture wastewater treatment in Spirulina platensis culture using biomass, protein content, and carotenoid pigments as indicators. A two-factorial completely randomized designs (CRD) was used in this study, where the factors include the dose of organic waste and Zarrouk fertilizer. The microalgae samples, namely S. platensis were cultured using fresh water. This research consists of two factors. The first factor is the dose of organic waste, and the second factor is the dose of Zarrouk fertilizer. The wastewater treatment consisted of 0, 2, 4, and 6 ml/L, while Zarrouk dosages include 0, 0.5, and 1 ml/L. The best results were obtained from the sample treated with 6 ml/L aquaculture wastewater without the addition of Zarrouk. Furthermore, this treatment gave biomass production of 0.781 g/L, 50.441% protein, and 1.246 mg/L carotenoids. Based on the results, S. platensis culture can be carried out using fish culture wastewater without the addition of Zarrouk fertilizer.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Antika, P. W., Nursyam, I. H., & Ekawati, I. A. W. (2021). Pemberian karbon organik onggok singkong pada kondisi miksotrofik terhadap pertumbuhan, kandungan beta karoten, klorofil-a, protein dan asam lemak esensial Dunaliella sp. Malang: Universitas Brawijaya.
- Al Mahrouqi, H., Vega, J., Dobretsov, S., & Díaz, R. T. A. (2022). The effect of medium concentration and nitrogen source on the productivity and biochemical composition of Arthrospira platensis. Biology Bulletin, 49(2):75-84.
- Armanda, D. T. (2013). The growth of diatom Skeletonema costatum (Greville) Cleve of Jepara's isolates cultures in f/2 and Conway culture. Bioma, 2(1):49-63.
- Ashour, M., Alprol, A. E., Heneash, A. M., Saleh, H., Abualnaja, K. M., Alhashmialameer, D., & Mansour, A. T. (2021). Ammonia bioremediation from aquaculture wastewater effluents using Arthrospira platensis NIOF17/003: Impact of biodiesel residue and potential of ammonia-loaded biomass as rotifer feed. Materials, 14(18):1-22.
- Asiimwe, N., Al Mazid, M. F., Murale, D. P., Kim, Y. K., & Lee, J. S. (2022). Recent advances in protein modifications techniques for the targeting N"terminal cysteine. Peptide Science, 114(3):e24235.
- Aulia, A. E., Maimunah, Y., & Suprastyani, H. (2021). Penggunaan ekstrak daun lamtoro (Leucaena Leucocephala) sebagai pupuk dengan salinitas yang berbeda terhadap laju pertumbuhan, biomassa dan klorofil-a pada mikroalga Chlorella vulgaris. Journal of Fisheries and Marine Research, 5(1):47-55.
- Buwono, N. R., & Nurhasanah, R. Q. (2018). Studi pertumbuhan populasi Spirulina sp. pada skala kultur yang berbeda. Jurnal Ilmiah Perikanan dan Kelautan, 10(1):26-33.
- Cardoso, L. G., Duarte, J. H., Andrade, B. B., Lemos, P. V. F., Costa, J. A. V., Druzian, J. I., & Chinalia, F. A. (2020). Spirulina sp. LEB 18 cultivation in outdoor pilot scale using aquaculture wastewater: High biomass, carotenoid, lipid, and carbohydrate production. Aquaculture, 525:735272.
- Cardoso, L. G., Duarte, J. H., Costa, J. A. V., de Jesus Assis, D., Lemos, P. V. F., Druzian, J. I., de Souza, C. O., Nunes, I. L., & Chinalia, F. A. (2021a). Spirulina sp. as a bioremediation agent for aquaculture wastewater: production of high added value compounds and estimation of theoretical biodiesel. BioEnergy Research, 14(1):254-264.
- Cardoso, L. G., Lombardi, A. T., de Jesus Silva, J. S., Lemos, P. V. F., Costa, J. A. V., de Souza, C. O., Druzian, J. I., & Chinalia, F. A. (2021b). Scaling-up production of Spirulina sp. LEB18 grown in aquaculture wastewater. Aquaculture, 544:737045.
- Depraetere, O., Deschoenmaeker, F., Badri, H., Monsieurs, P., Foubert, I., Leys, N., Wattiez, R., & Muylaert, K. (2015). Trade-off between growth and carbohydrate accumulation in nutrient-limited Arthrospira sp. PCC 8005 studied by integrating transcriptomic and proteomic approaches. PLoS One, 10(7):e0132461.
- Dong, S., Liu, Y. J., Zhou, H., Xiao, Y., Xu, J., Cui, Q., Wang, X., & Feng, Y. (2021). Structural insight into a GH1 β-glucosidase from the oleaginous microalga, Nannochloropsis oceanica. International Journal of Biological Macromolecules, 170:196-206.
- dos Santos, R. R., Corríªa, P. S., Andtas, F. M. L., & Teixeira, C. M. L. L. (2019). Evaluation of the co-production of total carotenoids, C-phycocyanin and polyhydroxyalkanoates by Arthrospira platensis. Bioresource Technology Reports, 7:100226.
- Duarte, J. H., Cardoso, L. G., de Souza, C. O., Nunes, I. L., Druzian, J. I., de Morais, M. G., & Costa, J. A. V. (2020). Brackish groundwater from Brazilian backlands in Spirulina cultures: potential of carbohydrate and polyunsaturated fatty acid production. Applied Biochemistry and Biotechnology, 190(3):907-917.
- El-Kassas, H. Y., Heneash, A. M., & Hussein, N. R. (2015). Cultivation of Arthrospira (Spirulina) platensis using confectionary wastes for aquaculture feeding. Journal of Genetic Engineering and Biotechnology, 13(2):145-155.
- Fakhri, M., Antika, P. W., Ekawati, A. W., & Arifin, N. B. (2020). Growth, pigment and protein production of Spirulina platensis under different Ca(NO3)2 concentrations. Journal of Aquaculture and Fish Health, 9(1):38-47.
- Hadiyanto, H., Digda, A., Adetya, N. P., & Evanty, M. (2019). Pretreatment of herbal, tofu and fertilizer waste using UV/ozon technique and its utilization for Spirulina sp cultivation. IOP Conf Series: Earth and Environmental Science, 248:(2019) 012071.
- Han, P., Lu, Q., Zhong, H., Xie, J., Leng, L., Li, J., Fan, L., Li, J., Chen, P., Yan, Y., Wei, F., & Zhou, W. (2021). Recycling nutrients from soy sauce wastewater to culture value-added Spirulina maxima. Algal Research, 53:102157.
- Holanda, M., Besold, C., Sempere, F. L., Abreu, P. C., & Poersch, L. (2022). Treatment of effluents from marine shrimp culture with biofloc technology: Production of Arthrospira (Spirulina) platensis (cyanobacteria) and nutrient removal. Journal of the World Aquaculture Society, 53(3):669-680.
- Janssen, M., Kuijpers, T. C., Veldhoen, B., Ternbach, M. B., Tramper, J., Mur, L. R., & Wijffels, R. H. (1999). The specific growth rate of Chlamydomonas reinhardtii and Chlorella sorokiniana under medium duration light/dark cycles: 13–87 s. In R. Osinga, J. Tramper, J. G. Burgess, & R. H. Wijffels (Ed.), Progress in industrial microbiology. (pp. 323-333). Noordwijkerhout: Elsevier.
- Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randal, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193:265-275.
- Madkour, F. F., Kamil, A. E. W., & Nasr, H. S. (2012). Production and nutritive value of Spirulina platensis in reduced cost media. The Egyptian Journal of Aquatic Research, 38(1):51-57.
- Markou, G., & Georgakakis, D. (2011). Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and wastewaters: A review. Applied Energy, 88(10):3389-3401.
- Markou, G., Kougia, E., Kefalogianni, I., Tsagou, V., Arapoglou, D., & Chatzipavlidis, I. (2019). Effect of glycerol concentration and light intensity on growth and biochemical composition of Arthrospira (Spirulina) platensis: a study in semi-continuous mode with non-aseptic conditions. Applied Sciences, 9(21):1-10.
- Martins, R. G., Gonçalves, I. S., de Morais, M. G., & Costa, J. A. V. (2014). Bioprocess engineering aspects of biopolymer production by the cyanobacterium Spirulina strain LEB 18. International Journal of Polymer Science, 2014(895237):1-7.
- Menegol, T., Diprat, A. B., Rodrigues, E., & Rech, R. (2017). Effect of temperature and nitrogen concentration on biomass composition of Heterochlorella luteoviridis. Food Science and Technology, 37:28-37.
- Nader, C., Cella, H., Lopes, R. G., Oliveira, C. Y. B., D'Alessandro, E. B., & Derner, R. B. (2022). Effect of different cultivation conditions on the production of volatile organic compounds by the microalgae Arthrospira platensis and Chlorella sp. Journal of Applied Phycology, 34(1):203-217.
- Napolitano, G., Venditti, P., Agnisola, C., Quartucci, S., Fasciolo, G., Tomajoli, M. T. M., Geremia, E., Catone, C. M., & Ulgiati, S. (2022). Towards sustainable aquaculture systems: Biological and environmental impact of replacing fishmeal with Arthrospira platensis (Nordstedt) (spirulina). Journal of Cleaner Production, 374:133978.
- Nogueira, S. M. S., Souza Junior, J., Maia, H. D., Saboya, J. P. S., & Farias, W. R. L. (2018). Use of Spirulina platensis in treatment of fish farming wastewater. Revista Ciíªncia Agroní´mica, 49(4):599-606.
- Piu, N. J. F., Koniyo, Y., & Salam, A. (2022). The effect of salinity and light on the density of Spirulina platensis, by using walne media. European Multidisciplinary Journal of Modern Science, 1-16.
- Prabhath, G. P. W. A., Shukla, S. P., Srivastava, P. P., Kumar, K., Sawant, P. B., Verma, A. K., Chouksey, M. K., & Nuwansi, K. K. T. (2022). Downstream processing of biomass produced in aquaculture wastewater for valuable pigments from the cyanobacterium Spirulina (Arthrospira) platensis: a green and sustainable approach. Aquaculture International, 30:3081-3106.
- Pratiwi, W. Z., Hadiyanto, H., & Purwanto, P. (2020). Bioelectricity production from tofu wastewater using microbial fuel cells with microalgae Spirulina sp. as catholyte. In E3S Web of Conferences (Vol. 202, p. 08007). EDP Sciences.
- Rahman, Md. H., Alam, M. A., Flura, Islam, Md. S., Arifuzzaman, Md., Moniruzzaman, Md., Al-Amin, Sultana, S., Jaman, A., Didar, M. A. K., & Mustafiz, Md. (2022). Potentiality of Digested Rotten Guava Medium (DRGM) in replacement of Kosaric Medium (KM): Perspective of Spirulina platensis culture. American Journal of Multidisciplinary Research and Innovation, 1(4):141-149.
- Ricigliano, V. A., & Simone-Finstrom, M. (2020). Nutritional and prebiotic efficacy of the microalga Arthrospira platensis (spirulina) in honey bees. Apidologie, 51(5):898-910.
- Salunke, K. J., Magar, S. A., Joshi, R. R., & Wadikar, M. S. (2016). Comparative study on the growth of Spirulina platensis on different culture media. Bioscience Discovery, 7(1):90-92.
- Sanz-Luque, E., Chamizo-Ampudia, A., Llamas, A., Galvan, A., & Fernandez, E. (2015). Understanding nitrate assimilation and its regulation in microalgae. Frontiers in Plant Science, 6:899.
- Satchasataporn, K., Duangsri, C., Charunchaipipat, W., Laloknam, S., Burut-Archanai, S., Powtongsook, S., Akrimajirachoote, N., & Raksajit, W. (2022). Enhanced production of poly-3-hydroxybutyrate and carotenoids by Arthrospira platensis under combined glycerol and phosphorus supplementation. ScienceAsia, 48(5):509-519.
- Setiawan, Y., Asthary, P. B., & Saepulloh. (2019). CO2 flue gas capture for cultivation of Spirulina platensis in paper mill effluent medium. AIP Conf Proceedings, 2120(1):040005.
- Shanthi, G., Premalatha, M., & Anantharaman, N. (2021). Potential utilization of fish waste for the sustainable production of microalgae rich in renewable protein and phycocyanin-Arthrospira platensis/Spirulina. Journal of Cleaner Production, 294:126106.
- Soni, R. A., Sudhakar, K., & Rana, R. S. (2017). Spirulina – From growth to nutritional product: A review. Trends in Food Science & Technology, 69(Part A):157-171.
- Soni, R. A., Sudhakar, K., & Rana, R. S. (2019). Comparative study on the growth performance of Spirulina platensis on modifying culture media. Energy Reports, 5:327-336.
- Sopandi, T., Rohmah, S., & Agustina, S. A. T. (2020). Biomass and nutrient composition of Spirulina platensis grown in goat manure media. Asian Journal of Agriculture and Biology, 8(2):158-167.
- Taufiqurrahmi, N., Religia, P., Mulyani, G., Suryana, D., Tanjung, F. A., & Arifin, Y. (2017). Phycocyanin extraction in Spirulina produced using agricultural waste. IOP Conf Series: Materials Science and Engineering, 206:(2017) 012097.
- Vo, T., & Tran, D. (2014). Carotene and antioxidant capacity of Dunaliella salina strains. World Journal of Nutrition and Health, 2(2):21-23.
- Wongsnansilp, T., & Phinrub, W. (2022). Evaluation of common wastewaters on the growth of alga Spirulina. Journal of Applied Biology and Biotechnology, 10(1):3-8.
- Wuang, S. C., Khin, M. C., Chua, P. Q. D., & Luo, Y. D. (2016). Use of Spirulina biomass produced from treatment of aquaculture wastewater as agricultural fertilizers. Algal research, 15:59-64.
- Zarrinmehr, M. J., Farhadian, O., Heyrati, F. P., Keramat, J., Koutra, E., Kornaros, M., & Daneshvar, E. (2020). Effect of nitrogen concentration on the growth rate and biochemical composition of the microalga, Isochrysis galbana. The Egyptian Journal of Aquatic Research, 46(2):153-158.
- Zhou, W., Li, Y., Gao, Y., & Zhao, H. (2017). Nutrients removal and recovery from saline wastewater by Spirulina platensis. Bioresource Technology, 245(Part A):10-17.
References
Antika, P. W., Nursyam, I. H., & Ekawati, I. A. W. (2021). Pemberian karbon organik onggok singkong pada kondisi miksotrofik terhadap pertumbuhan, kandungan beta karoten, klorofil-a, protein dan asam lemak esensial Dunaliella sp. Malang: Universitas Brawijaya.
Al Mahrouqi, H., Vega, J., Dobretsov, S., & Díaz, R. T. A. (2022). The effect of medium concentration and nitrogen source on the productivity and biochemical composition of Arthrospira platensis. Biology Bulletin, 49(2):75-84.
Armanda, D. T. (2013). The growth of diatom Skeletonema costatum (Greville) Cleve of Jepara's isolates cultures in f/2 and Conway culture. Bioma, 2(1):49-63.
Ashour, M., Alprol, A. E., Heneash, A. M., Saleh, H., Abualnaja, K. M., Alhashmialameer, D., & Mansour, A. T. (2021). Ammonia bioremediation from aquaculture wastewater effluents using Arthrospira platensis NIOF17/003: Impact of biodiesel residue and potential of ammonia-loaded biomass as rotifer feed. Materials, 14(18):1-22.
Asiimwe, N., Al Mazid, M. F., Murale, D. P., Kim, Y. K., & Lee, J. S. (2022). Recent advances in protein modifications techniques for the targeting N"terminal cysteine. Peptide Science, 114(3):e24235.
Aulia, A. E., Maimunah, Y., & Suprastyani, H. (2021). Penggunaan ekstrak daun lamtoro (Leucaena Leucocephala) sebagai pupuk dengan salinitas yang berbeda terhadap laju pertumbuhan, biomassa dan klorofil-a pada mikroalga Chlorella vulgaris. Journal of Fisheries and Marine Research, 5(1):47-55.
Buwono, N. R., & Nurhasanah, R. Q. (2018). Studi pertumbuhan populasi Spirulina sp. pada skala kultur yang berbeda. Jurnal Ilmiah Perikanan dan Kelautan, 10(1):26-33.
Cardoso, L. G., Duarte, J. H., Andrade, B. B., Lemos, P. V. F., Costa, J. A. V., Druzian, J. I., & Chinalia, F. A. (2020). Spirulina sp. LEB 18 cultivation in outdoor pilot scale using aquaculture wastewater: High biomass, carotenoid, lipid, and carbohydrate production. Aquaculture, 525:735272.
Cardoso, L. G., Duarte, J. H., Costa, J. A. V., de Jesus Assis, D., Lemos, P. V. F., Druzian, J. I., de Souza, C. O., Nunes, I. L., & Chinalia, F. A. (2021a). Spirulina sp. as a bioremediation agent for aquaculture wastewater: production of high added value compounds and estimation of theoretical biodiesel. BioEnergy Research, 14(1):254-264.
Cardoso, L. G., Lombardi, A. T., de Jesus Silva, J. S., Lemos, P. V. F., Costa, J. A. V., de Souza, C. O., Druzian, J. I., & Chinalia, F. A. (2021b). Scaling-up production of Spirulina sp. LEB18 grown in aquaculture wastewater. Aquaculture, 544:737045.
Depraetere, O., Deschoenmaeker, F., Badri, H., Monsieurs, P., Foubert, I., Leys, N., Wattiez, R., & Muylaert, K. (2015). Trade-off between growth and carbohydrate accumulation in nutrient-limited Arthrospira sp. PCC 8005 studied by integrating transcriptomic and proteomic approaches. PLoS One, 10(7):e0132461.
Dong, S., Liu, Y. J., Zhou, H., Xiao, Y., Xu, J., Cui, Q., Wang, X., & Feng, Y. (2021). Structural insight into a GH1 β-glucosidase from the oleaginous microalga, Nannochloropsis oceanica. International Journal of Biological Macromolecules, 170:196-206.
dos Santos, R. R., Corríªa, P. S., Andtas, F. M. L., & Teixeira, C. M. L. L. (2019). Evaluation of the co-production of total carotenoids, C-phycocyanin and polyhydroxyalkanoates by Arthrospira platensis. Bioresource Technology Reports, 7:100226.
Duarte, J. H., Cardoso, L. G., de Souza, C. O., Nunes, I. L., Druzian, J. I., de Morais, M. G., & Costa, J. A. V. (2020). Brackish groundwater from Brazilian backlands in Spirulina cultures: potential of carbohydrate and polyunsaturated fatty acid production. Applied Biochemistry and Biotechnology, 190(3):907-917.
El-Kassas, H. Y., Heneash, A. M., & Hussein, N. R. (2015). Cultivation of Arthrospira (Spirulina) platensis using confectionary wastes for aquaculture feeding. Journal of Genetic Engineering and Biotechnology, 13(2):145-155.
Fakhri, M., Antika, P. W., Ekawati, A. W., & Arifin, N. B. (2020). Growth, pigment and protein production of Spirulina platensis under different Ca(NO3)2 concentrations. Journal of Aquaculture and Fish Health, 9(1):38-47.
Hadiyanto, H., Digda, A., Adetya, N. P., & Evanty, M. (2019). Pretreatment of herbal, tofu and fertilizer waste using UV/ozon technique and its utilization for Spirulina sp cultivation. IOP Conf Series: Earth and Environmental Science, 248:(2019) 012071.
Han, P., Lu, Q., Zhong, H., Xie, J., Leng, L., Li, J., Fan, L., Li, J., Chen, P., Yan, Y., Wei, F., & Zhou, W. (2021). Recycling nutrients from soy sauce wastewater to culture value-added Spirulina maxima. Algal Research, 53:102157.
Holanda, M., Besold, C., Sempere, F. L., Abreu, P. C., & Poersch, L. (2022). Treatment of effluents from marine shrimp culture with biofloc technology: Production of Arthrospira (Spirulina) platensis (cyanobacteria) and nutrient removal. Journal of the World Aquaculture Society, 53(3):669-680.
Janssen, M., Kuijpers, T. C., Veldhoen, B., Ternbach, M. B., Tramper, J., Mur, L. R., & Wijffels, R. H. (1999). The specific growth rate of Chlamydomonas reinhardtii and Chlorella sorokiniana under medium duration light/dark cycles: 13–87 s. In R. Osinga, J. Tramper, J. G. Burgess, & R. H. Wijffels (Ed.), Progress in industrial microbiology. (pp. 323-333). Noordwijkerhout: Elsevier.
Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randal, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193:265-275.
Madkour, F. F., Kamil, A. E. W., & Nasr, H. S. (2012). Production and nutritive value of Spirulina platensis in reduced cost media. The Egyptian Journal of Aquatic Research, 38(1):51-57.
Markou, G., & Georgakakis, D. (2011). Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and wastewaters: A review. Applied Energy, 88(10):3389-3401.
Markou, G., Kougia, E., Kefalogianni, I., Tsagou, V., Arapoglou, D., & Chatzipavlidis, I. (2019). Effect of glycerol concentration and light intensity on growth and biochemical composition of Arthrospira (Spirulina) platensis: a study in semi-continuous mode with non-aseptic conditions. Applied Sciences, 9(21):1-10.
Martins, R. G., Gonçalves, I. S., de Morais, M. G., & Costa, J. A. V. (2014). Bioprocess engineering aspects of biopolymer production by the cyanobacterium Spirulina strain LEB 18. International Journal of Polymer Science, 2014(895237):1-7.
Menegol, T., Diprat, A. B., Rodrigues, E., & Rech, R. (2017). Effect of temperature and nitrogen concentration on biomass composition of Heterochlorella luteoviridis. Food Science and Technology, 37:28-37.
Nader, C., Cella, H., Lopes, R. G., Oliveira, C. Y. B., D'Alessandro, E. B., & Derner, R. B. (2022). Effect of different cultivation conditions on the production of volatile organic compounds by the microalgae Arthrospira platensis and Chlorella sp. Journal of Applied Phycology, 34(1):203-217.
Napolitano, G., Venditti, P., Agnisola, C., Quartucci, S., Fasciolo, G., Tomajoli, M. T. M., Geremia, E., Catone, C. M., & Ulgiati, S. (2022). Towards sustainable aquaculture systems: Biological and environmental impact of replacing fishmeal with Arthrospira platensis (Nordstedt) (spirulina). Journal of Cleaner Production, 374:133978.
Nogueira, S. M. S., Souza Junior, J., Maia, H. D., Saboya, J. P. S., & Farias, W. R. L. (2018). Use of Spirulina platensis in treatment of fish farming wastewater. Revista Ciíªncia Agroní´mica, 49(4):599-606.
Piu, N. J. F., Koniyo, Y., & Salam, A. (2022). The effect of salinity and light on the density of Spirulina platensis, by using walne media. European Multidisciplinary Journal of Modern Science, 1-16.
Prabhath, G. P. W. A., Shukla, S. P., Srivastava, P. P., Kumar, K., Sawant, P. B., Verma, A. K., Chouksey, M. K., & Nuwansi, K. K. T. (2022). Downstream processing of biomass produced in aquaculture wastewater for valuable pigments from the cyanobacterium Spirulina (Arthrospira) platensis: a green and sustainable approach. Aquaculture International, 30:3081-3106.
Pratiwi, W. Z., Hadiyanto, H., & Purwanto, P. (2020). Bioelectricity production from tofu wastewater using microbial fuel cells with microalgae Spirulina sp. as catholyte. In E3S Web of Conferences (Vol. 202, p. 08007). EDP Sciences.
Rahman, Md. H., Alam, M. A., Flura, Islam, Md. S., Arifuzzaman, Md., Moniruzzaman, Md., Al-Amin, Sultana, S., Jaman, A., Didar, M. A. K., & Mustafiz, Md. (2022). Potentiality of Digested Rotten Guava Medium (DRGM) in replacement of Kosaric Medium (KM): Perspective of Spirulina platensis culture. American Journal of Multidisciplinary Research and Innovation, 1(4):141-149.
Ricigliano, V. A., & Simone-Finstrom, M. (2020). Nutritional and prebiotic efficacy of the microalga Arthrospira platensis (spirulina) in honey bees. Apidologie, 51(5):898-910.
Salunke, K. J., Magar, S. A., Joshi, R. R., & Wadikar, M. S. (2016). Comparative study on the growth of Spirulina platensis on different culture media. Bioscience Discovery, 7(1):90-92.
Sanz-Luque, E., Chamizo-Ampudia, A., Llamas, A., Galvan, A., & Fernandez, E. (2015). Understanding nitrate assimilation and its regulation in microalgae. Frontiers in Plant Science, 6:899.
Satchasataporn, K., Duangsri, C., Charunchaipipat, W., Laloknam, S., Burut-Archanai, S., Powtongsook, S., Akrimajirachoote, N., & Raksajit, W. (2022). Enhanced production of poly-3-hydroxybutyrate and carotenoids by Arthrospira platensis under combined glycerol and phosphorus supplementation. ScienceAsia, 48(5):509-519.
Setiawan, Y., Asthary, P. B., & Saepulloh. (2019). CO2 flue gas capture for cultivation of Spirulina platensis in paper mill effluent medium. AIP Conf Proceedings, 2120(1):040005.
Shanthi, G., Premalatha, M., & Anantharaman, N. (2021). Potential utilization of fish waste for the sustainable production of microalgae rich in renewable protein and phycocyanin-Arthrospira platensis/Spirulina. Journal of Cleaner Production, 294:126106.
Soni, R. A., Sudhakar, K., & Rana, R. S. (2017). Spirulina – From growth to nutritional product: A review. Trends in Food Science & Technology, 69(Part A):157-171.
Soni, R. A., Sudhakar, K., & Rana, R. S. (2019). Comparative study on the growth performance of Spirulina platensis on modifying culture media. Energy Reports, 5:327-336.
Sopandi, T., Rohmah, S., & Agustina, S. A. T. (2020). Biomass and nutrient composition of Spirulina platensis grown in goat manure media. Asian Journal of Agriculture and Biology, 8(2):158-167.
Taufiqurrahmi, N., Religia, P., Mulyani, G., Suryana, D., Tanjung, F. A., & Arifin, Y. (2017). Phycocyanin extraction in Spirulina produced using agricultural waste. IOP Conf Series: Materials Science and Engineering, 206:(2017) 012097.
Vo, T., & Tran, D. (2014). Carotene and antioxidant capacity of Dunaliella salina strains. World Journal of Nutrition and Health, 2(2):21-23.
Wongsnansilp, T., & Phinrub, W. (2022). Evaluation of common wastewaters on the growth of alga Spirulina. Journal of Applied Biology and Biotechnology, 10(1):3-8.
Wuang, S. C., Khin, M. C., Chua, P. Q. D., & Luo, Y. D. (2016). Use of Spirulina biomass produced from treatment of aquaculture wastewater as agricultural fertilizers. Algal research, 15:59-64.
Zarrinmehr, M. J., Farhadian, O., Heyrati, F. P., Keramat, J., Koutra, E., Kornaros, M., & Daneshvar, E. (2020). Effect of nitrogen concentration on the growth rate and biochemical composition of the microalga, Isochrysis galbana. The Egyptian Journal of Aquatic Research, 46(2):153-158.
Zhou, W., Li, Y., Gao, Y., & Zhao, H. (2017). Nutrients removal and recovery from saline wastewater by Spirulina platensis. Bioresource Technology, 245(Part A):10-17.