
Date Log
Copyright (c) 2025 Jurnal Ilmiah Perikanan dan Kelautan

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
1. Copyright of the article is transferred to the journal, by the knowledge of the author, whilst the moral right of the publication belongs to the author.
2. The legal formal aspect of journal publication accessibility refers to Creative Commons Atribusi-Non Commercial-Share alike (CC BY-NC-SA), (https://creativecommons.org/licenses/by-nc-sa/4.0/)
3. The articles published in the journal are open access and can be used for non-commercial purposes. Other than the aims mentioned above, the editorial board is not responsible for copyright violation
The manuscript authentic and copyright statement submission can be downloaded ON THIS FORM.
In silico and In vitro Antibacterial Activity of Centella asiatica Leaves Bioactive Compounds Against Aquaculture Pathogenic Bacteria
Corresponding Author(s) : Septyan Andriyanto
Jurnal Ilmiah Perikanan dan Kelautan, 2025: IN PRESS ISSUE (JUST ACCEPTED MANUSCRIPT, 2025)
Abstract
Graphical Abstract
Highlight Research
- The GC-MS analysis of the asiatica leaves extracts identified 53 bioactive compounds.
- The crude extracts of asiatica showed antibacterial efficacy against fish pathogenic bacteria.
- 13-Hexyloxacyclotridec-10-en-2-one has the potential to be an inhibitor of DNA gyrase.
- Bioactive compounds derived from C. asiatica leaves extracts show potential as antibacterial agents.
Abstract
Antimicrobial agents are crucial for managing bacterial infections in fish cultures. Centella asiatica is a medicinal plant recognised for its diverse bioactive compounds with important antibacterial properties. The present study aimed to investigate the antibacterial activity of C. asiatica leaves bioactive compounds on fish pathogenic bacteria using an in vitro and in silico approach. The maceration method was used to extract bioactive compounds from C. asiatica leaves and was identified using Gas Chromatography-Mass Spectrometry (GC-MS). In vitro analysis of antibacterial activity was evaluated using the minimum inhibitory concentration method. While in silico molecular docking is applied alongside assessing Lipinski's rules of five, as well as absorption, distribution, metabolism, excretion, and toxicity properties. The result of the GC-MS examination of the C. asiatica leaf extracts identified 53 bioactive compounds. In vitro studies showed antibacterial efficacy of leaf extracts against fish pathogenic bacteria (Streptococcus agalactiae, Bacillus subtilis, and Staphylococcus aureus) with minimum inhibitory concentration values of 12,5 mg/ml. In silico molecular docking analysis showed that several bioactive compounds have the potential to be DNA gyrase inhibitors. Compound 13-Hexyloxacyclotridec-10-en-2-one has the highest inhibition with binding energy of −7,4 Kcal/mol compared to ciprofloxacin as drug standard with a binding energy value −7,3 Kcal/mol. The following compound is gamma.-Muurolene (−6,7 Kcal/mol), Copaene (−6,6 Kcal/mol) and Humulene (−6,6 Kcal/mol). These results suggest that bioactive compounds of C. asiatica leaves extracts hold promise as potential antibacterial agents for treating fish pathogenic bacteria infections.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Abishad, P., Niveditha, P., Unni, V., Vergis, J., Kurkure, N. V., Chaudhari, S., & Barbuddhe S. B. (2021). In silico molecular docking and in vitro antimicrobial efficacy of phytochemicals against multi-drug-resistant enteroaggregative Escherichia coli and non-typhoidal Salmonella spp. Gut Pathogens, 13(46):1-11.
- Agneeswari, S., Santhanam, A., & Jenishini, J. (2019). Characterization and antimicrobial activity of Centella asiatica. International Journal of Engineering and Advanced Technology, 9(6):125-131.
- Akkol, K. E., Çankaya, T. I., Karatoprak, S. G., Carpar, E., Sobarzo-Sánchez, E., & Capasso, R. (2021). Natural compounds as medical strategies in the prevention and treatment of psychiatric disorders seen in neurological diseases. Frontiers in Pharmacology, 12(669638):1-27.
- Biradar, S. R., & Rachetti, B. D. (2013). Extraction of some secondary metabolites & thin layer chromatography from different parts of Centella asiatica L. (Urb). American Journal of Life Sciences, 1(6):243-247.
- Bondad‐Reantaso, M. G., MacKinnon, B., Karunasagar, I., Fridman, S., Alday‐Sanz, V., Brun, E., Groumellec, M. L., Li, A., Surachetpong, W., Karunasagar, I., Hao, B., Dall'Occo, A., Urbani, R., & Caputo, A. (2023). Review of alternatives to antibiotic use in aquaculture. Reviews in Aquaculture, 15(4):1421-1451.
- Chen, X. W., Wu, J. H., Liu, Y. L., Munang’andu, H. M., & Peng, B. (2023). Fructose promotes Ampicillin killing of antibiotic-resistant Streptococcus agalactiae. Virulence, 14(1):1-16.
- Choudhury, D., Alanbari, R., Saveliev, P., Sokurenko, E., Fuzi, M., & Tchesnokova, V. (2024). Clonal and resistance profiles of fluoroquinolone-resistant uropathogenic Escherichia coli in countries with different practices of antibiotic prescription. Frontiers in Microbiology, 15(1446818):1-11.
- Eberhardt, J., Santos-Martins, D., Tillack, A. F., & Forli, S. (2021). AutoDock Vina 1.2. 0: New docking methods, expanded force field, and python bindings. Journal of Chemical Information and Modeling, 61(8):3891-3898.
- Frau, J., Flores-Holgúın, N., & Glossman‐Mitnik, D. (2018). Chemical reactivity properties, PKA values, ages inhibitor abilities and bioactivity scores of the mirabamides A-H peptides of marine origin studied by means of conceptual DFT. Marine Drugs, 16(302):1-19.
- Ghanem, H., Khaoua, O., Ouahab, A., Benbellat, N., & Haba, H. (2024). In silico pharmacodynamics, antineoplastic activity and molecular docking of two phytochemicals isolated from Thymelaea microphylla. Letters in Drug Design & Discovery, 21(13):2644-2660.
- Grigor’eva, A. E., Bardasheva, A. V., Ryabova, E. S., Tupitsyna, A. V., Zadvornykh, D. A., Koroleva, L. S., Silnikov, V. N., Tikunova, N. V., & Ryabchikova E. I. (2023). Changes in the ultrastructure of Staphylococcus aureus cells make it possible to identify and analyze the injuring effects of ciprofloxacin, polycationic amphiphile and their hybrid. Microorganisms, 11(2192):1-11.
- Hussein, M. E., Mohamed, O. G., El-Fishawy, A. M., El-Askary, H. I., El-Senousy, A. S., El-Beih, A. A., Nossier, E. S., Naglah, A. M., Almehizia, A. A., Tripathi, A., & Hamed, A. A. (2022). Identification of antibacterial metabolites from endophytic fungus Aspergillus fumigatus, isolated from Albizia lucidior leaves (Fabaceae), utilizing metabolomic and molecular docking techniques. Molecules, 27(1117):1-21.
- Jenitha, K. (2023). Antimicrobial activity and phytochemical analysis of extract of Centella asiatica. International Journal of Zoological Investigations, 9(2):160-168.
- Kathirvel, A., Ramalingam, S., Harini, S. T., Ranjith, N., Kumar, G. S., Lalithambigai, K., Atchudan, R., Habila, M. A., Aljuwayid, A. M., & Yun, H. K. (2025). Eco-friendly synthesis of zirconium dioxide nanoparticles from Toddalia asiatica: Applications in dye degradation, antioxidant and antibacterial activity. Nanomaterials, 15(84):1-18.
- Kumari, S., & Kumar, P. (2023). Design and computational analysis of an mmp9 inhibitor in hypoxia-induced glioblastoma multiforme. ACS Omega, 8(11):10565-10590.
- Lane, T. R., Harris, J., Urbina, F., & Ekins S. (2023). Comparing LD50/LC50 machine learning models for multiple species. ACS Chemical Health & Safety, 30(2):83-97.
- Li, M., Han, R., Li, J., Wu, W., & Gu J. (2024). Research progress in acute oral toxicity testing methods. International Journal of Biology and Life Sciences, 6(1):19-22.
- Liu, Y. T., Chuang, Y. C., Lo, Y. S., Lin, C. C., His, Y. T., Hsieh, M. J., & Chen M. K. (2020). Asiatic acid, extracted from Centella asiatica and induces apoptosis pathway through the phosphorylation p38 mitogen-activated protein kinase in cisplatin-resistant nasopharyngeal carcinoma cells. Biomolecules, 10(184):1-13.
- Liu, Y., Yang, X., Gan, J., Chen, S., Xiao, Z. X., & Cao Y. (2022). CB-Dock2: Improved protein–ligand blind docking by integrating cavity detection, docking and homologous template fitting. Nucleic Acids Research, 50(W1):W159-W164.
- Magaña, A. A., Wright, K., Vaswani, A., Caruso, M., Reed, R. L., Bailey, C. F., Nguyen, T., Gray, N. E., Soumyanath, A., Quinn, J., Stevens, J. F., & Maier C. S. (2020). Integration of mass spectral fingerprinting analysis with precursor ion (MS1) quantification for the characterisation of botanical extracts: application to extracts of Centella asiatica (L.) urban. Phytochemical Analysis, 31(6):722-738.
- Maitra, P., Basak, P., Okamoto, K., Miyoshi, S., Dutta, S., & Bhattacharya, S. (2022). Asiatic acid inhibits intracellular Shigella flexneri growth by inducing antimicrobial peptide gene expression. Journal of Applied Microbiology, 134(2):1-12.
- Menon, S., Mishra, A., Kathirvel, M., Biju, C., Prudhvi, P., & Rao, G. E. (2023). Phytochemical analysis and in vitro evaluation of antibacterial and antidermatophytic activity of Centella asiatica (L.) urban extracts. Medicinal Plants-International Journal of Phytomedicines and Related Industries, 15(3):571-578.
- Micheli, L., Toti, A., Lucarini, E., Ferrara, V., Ciampi, C., Olivero, G., Pittaluga, A., Mattoli, L., Pelucchini, C., Burico, M., Lucci, J., Carrino, D., Pacini, A., Pallanti, S., Mannelli, L. D. C., & Ghelardini, C. (2022). Efficacy of a vegetal mixture composed of Zingiber officinale, Echinacea purpurea, and Centella asiatica in a mouse model of neuroinflammation: In vivo and ex vivo analysis. Frontiers in Nutrition, 9 (887378):1-17.
- Mohapatra, P., Ray, A., Sandeep, I. S., Parida, R., & Mohanty, S. (2021). Genetic and biochemical stability of in vitro raised and conventionally propagated Centella asiatica-A valuable medicinal herb. South African Journal of Botany, 140(2021):444-453.
- Nguyen, V. B., Wang, S. L., Phan, T. Q., Pham, T. H. T., Huang, H. T., Liaw, C. C., & Nguyen, A. D. (2023). Screening and elucidation of chemical structures of novel mammalian α-Glucosidase inhibitors targeting anti-diabetes drug from herbals used by E De ethnic tribe in Vietnam. Pharmaceuticals, 16(756):1-20.
- Pham, X. N., Nguyen, H. T., & Pham, N. T. (2020). Green synthesis and antibacterial activity of HAp@ Ag nanocomposite using Centella asiatica (L.) urban extract and eggshell. International Journal of Biomaterials, 2020(8841221):1-12.
- Pillai, A. R. S., Bhosale, Y. K., & Roy, S. (2024). Extraction of bioactive compounds from Centella asiatica and enlightenment of its utilization into food packaging: A review. International Journal of Food Science, 2024(1249533):1-16.
- Qurrotuaini, S., Wiqoyah, N., & Mustika, A. (2022). Antimicrobial activity of ethanol extract of Centella asiatica leaves on Proteus mirabilis, Proteus vulgaris, and Yersinia enterocolitica in vitro. Molecular and Cellular Biomedical Sciences, 6(3):135-140.
- Rafi, M., Madya, M. M., Karomah, A. H., Septaningsih, D. A., Ridwan, T., Rohaeti, E., Aisyah, S., Idroes, R. (2024). LC-HRMS-based metabolomics for profiling the metabolites in different plant parts of Centella asiatica. HAYATI Journal of Biosciences, 31(6):1106-1115.
- Rukisah, R., Maulianawati, D., & Cahyadi, J. (2019). In vitro antibacterial efficacy of leaves extract of Centella asiatica against Vibrio harveyi and Aeromonas hydrophila. Indonesian Aquaculture Journal, 14(2):69-74.
- Selvarajan, V. S., Selvarajan, R., Pandiyan, J., & Abia, A. L. K. (2023). Unveiling the potency and harnessing the antibacterial activities of plant oils against foodborne pathogens. Microbiology Research, 14(3):1291-1300.
- Shankar, S., & Sathiavelu, M. (2024). Paradendryphiella arenariae an endophytic fungus of Centella asiatica inhibits the bacterial pathogens of fish and shellfish. Frontiers in Microbiology, 15:1-17.
- Si, Z., Ma, Z., Luo, F., Shi, J., Huang, J., Wang, Z., Wen, Y., & Han S. (2023). Establishment of SYBR green I real-time PCR for detection of Streptococcus agalactiae in aquaculture waters. Journal of Applied Ichthyology, 2023(9199300):1-9.
- Sieberi, B. M., Omwenga, G. I., Wambua, R. K., Samoei, J. C., & Ngugi, M. P. (2020). Screening of the dichloromethane: Methanolic extract of Centella asiatica for antibacterial activities against Salmonella typhi, Escherichia coli, Shigella sonnei, Bacillus subtilis, and Staphylococcus aureus. The Scientific World Journal, 2020(6378712):1-8.
- Singh, P., Sharma, A., Bordoloi, M., & Nandi, S. P. (2023). Antimicrobial, antioxidant, GC-MS analysis and molecular docking analysis of bioactive compounds of endophyte Aspergillus flavus from Argemone mexicana. Journal of Microbiology, Biotechnology and Food Sciences, 13(1):e9970.
- Sun, B., Wu, L., Wu, Y., Zhang, C., Qin, L., Hayashi, M., Kudo, M., Gao, M., & Liu, T. (2020). Therapeutic potential of Centella asiatica and its triterpenes: A review. Frontiers in Pharmacology, 11:1-24.
- Taghizadeh, M., & Jalili, S. (2024). Phytochemical content, antioxidant properties, and antibacterial activities of Centella asiatica L. Natural Product Research, 38(20):3693-3698.
- Taleghani, A., Eghbali, S., Moghimi, R., & Mokaber‐Esfahani M. (2024). Crataegus pentagyna willd. fruits, leaves and roots: Phytochemicals, antioxidant and antimicrobial potentials. BMC Complementary Medicine and Therapies, 24(126):1-20.
- Tripathy, S., Verma, D. K., Thakur, M., Chakravorty, N., Singh, S., & Srivastav, P. P. (2022). Recent trends in extraction, identification and quantification methods of Centella asiatica phytochemicals with potential applications in food industry and therapeutic relevance: A review. Food Bioscience, 49(101864).
- Wang, R., Huang, H., Du, W., Xia, G., & Tan, Y. (2024a). Network pharmacology and in vivo validation to explore the potential active ingredients and mechanisms of Ziyin Buyang formula in diminished ovarian reserve. Natural Product Communications, 19(4):1-13.
- Wang, D., Li, J., Zhu, G., Zhao, K., Jiang, W., Li, H., Wang, W., Kumar, V., Dong, S., Zhu, W., & Tian, X. (2020). Mechanism of the potential therapeutic candidate Bacillus subtilis BSXE-1601 against shrimp pathogenic Vibrios and multifunctional metabolites biosynthetic capability of the strain as predicted by genome analysis. Frontiers in Microbiology, 11(581802):1-15.
- Wang, X., Zhang, Y., Song, A., Wang, H., Wu, Y., Chang, W., Tian, B., Xu, J., Dai, H., Ma, Q., Wang, C., & Zhou, X. (2024b). A printable hydrogel loaded with medicinal plant extract for promoting wound healing. Advanced Healthcare Materials, 13(8):e2303017.
- Wei, C., Cui, P., & Liu, X. (2023). Antibacterial activity and mechanism of madecassic acid against Staphylococcus aureus. Molecules, 28(1895):1-17.
- Wong, J. X., & Ramli, S. (2021). Antimicrobial activity of different types of Centella asiatica extracts against foodborne pathogens and food spoilage microorganisms. LWT-Food Science and Technology, 142(111026).
- Wu, Z., Jiang, D., Wang, J., Hsieh, C. Y., Cao, D., & Hou T. (2021). Mining toxicity information from large amounts of toxicity data. Journal of Medicinal Chemistry, 64(10):6924-6936.
- Xu, L., Zhang, J., Wang, Y., Zhang, Z., Wang, F., & Tang, X. (2021). Uncovering the mechanism of Ge-Gen-Qin-Lian decoction for treating ulcerative colitis based on network pharmacology and molecular docking verification. Bioscience Reports, 41(BSR20203565):1-25.
- Yang, L., Marney, L., Magaña, A. A., Choi, J., Wright, K., Mcferrin, J., Gray, N. E., Soumyanath, A., Stevens, J. F., & Maier, C. S. (2023). Quantification of caffeoylquinic acids and triterpenes as targeted bioactive compounds of Centella asiatica in extracts and formulations by liquid chromatography mass spectrometry. Journal of Chromatography Open, 4(100091):1-10.
- Yusof, N. N. M., Idris, K., Rahman, T. A. F. T. A., Adnan, L. A., & Aziz, N. A. A. (2020). Spectroscopy analysis of antimicrobial compound in Centella asiatica extract. Malaysian Journal of Science Health & Technology, 7(1):65-70.
- Zafar, F., Gupta, A., Thangavel, K., Khatana, K., Sani, A. A., Ghosal, A., Tandon, P., & Nishat, N. (2020). Physicochemical and pharmacokinetic analysis of anacardic acid derivatives. ACS Omega, 5(11):6021-6030.
- Zelellw, D. A., Dessie, G., Mengesha, E. W., Shiferaw, M. B., Merhaba, M. M., and Emishaw, S. (2021). A systemic review and meta‐analysis of the leading pathogens causing neonatal sepsis in developing countries. BioMed Research International, 2021(6626983):1-20.
- Zheng, W., Lei, M., Yao, Y., Zhan, J., Zhang, Y., & Zhou Q. (2024). Mechanisms underlying the therapeutic effects of Semen cuscutae in treating recurrent spontaneous abortion based on network pharmacology and molecular docking. Frontiers in Molecular Biosciences, 11(1282100):1-13.
- Zhang, Y., Yang, Z., & Cock I. E. (2020). Centella asiatica (l.) urban leaf extracts inhibit the growth of bacterial triggers of selected autoimmune inflammatory diseases and potentiate the activity of conventional antibiotics. Pharmacognosy Communications, 10(3):119-129.
References
Abishad, P., Niveditha, P., Unni, V., Vergis, J., Kurkure, N. V., Chaudhari, S., & Barbuddhe S. B. (2021). In silico molecular docking and in vitro antimicrobial efficacy of phytochemicals against multi-drug-resistant enteroaggregative Escherichia coli and non-typhoidal Salmonella spp. Gut Pathogens, 13(46):1-11.
Agneeswari, S., Santhanam, A., & Jenishini, J. (2019). Characterization and antimicrobial activity of Centella asiatica. International Journal of Engineering and Advanced Technology, 9(6):125-131.
Akkol, K. E., Çankaya, T. I., Karatoprak, S. G., Carpar, E., Sobarzo-Sánchez, E., & Capasso, R. (2021). Natural compounds as medical strategies in the prevention and treatment of psychiatric disorders seen in neurological diseases. Frontiers in Pharmacology, 12(669638):1-27.
Biradar, S. R., & Rachetti, B. D. (2013). Extraction of some secondary metabolites & thin layer chromatography from different parts of Centella asiatica L. (Urb). American Journal of Life Sciences, 1(6):243-247.
Bondad‐Reantaso, M. G., MacKinnon, B., Karunasagar, I., Fridman, S., Alday‐Sanz, V., Brun, E., Groumellec, M. L., Li, A., Surachetpong, W., Karunasagar, I., Hao, B., Dall'Occo, A., Urbani, R., & Caputo, A. (2023). Review of alternatives to antibiotic use in aquaculture. Reviews in Aquaculture, 15(4):1421-1451.
Chen, X. W., Wu, J. H., Liu, Y. L., Munang’andu, H. M., & Peng, B. (2023). Fructose promotes Ampicillin killing of antibiotic-resistant Streptococcus agalactiae. Virulence, 14(1):1-16.
Choudhury, D., Alanbari, R., Saveliev, P., Sokurenko, E., Fuzi, M., & Tchesnokova, V. (2024). Clonal and resistance profiles of fluoroquinolone-resistant uropathogenic Escherichia coli in countries with different practices of antibiotic prescription. Frontiers in Microbiology, 15(1446818):1-11.
Eberhardt, J., Santos-Martins, D., Tillack, A. F., & Forli, S. (2021). AutoDock Vina 1.2. 0: New docking methods, expanded force field, and python bindings. Journal of Chemical Information and Modeling, 61(8):3891-3898.
Frau, J., Flores-Holgúın, N., & Glossman‐Mitnik, D. (2018). Chemical reactivity properties, PKA values, ages inhibitor abilities and bioactivity scores of the mirabamides A-H peptides of marine origin studied by means of conceptual DFT. Marine Drugs, 16(302):1-19.
Ghanem, H., Khaoua, O., Ouahab, A., Benbellat, N., & Haba, H. (2024). In silico pharmacodynamics, antineoplastic activity and molecular docking of two phytochemicals isolated from Thymelaea microphylla. Letters in Drug Design & Discovery, 21(13):2644-2660.
Grigor’eva, A. E., Bardasheva, A. V., Ryabova, E. S., Tupitsyna, A. V., Zadvornykh, D. A., Koroleva, L. S., Silnikov, V. N., Tikunova, N. V., & Ryabchikova E. I. (2023). Changes in the ultrastructure of Staphylococcus aureus cells make it possible to identify and analyze the injuring effects of ciprofloxacin, polycationic amphiphile and their hybrid. Microorganisms, 11(2192):1-11.
Hussein, M. E., Mohamed, O. G., El-Fishawy, A. M., El-Askary, H. I., El-Senousy, A. S., El-Beih, A. A., Nossier, E. S., Naglah, A. M., Almehizia, A. A., Tripathi, A., & Hamed, A. A. (2022). Identification of antibacterial metabolites from endophytic fungus Aspergillus fumigatus, isolated from Albizia lucidior leaves (Fabaceae), utilizing metabolomic and molecular docking techniques. Molecules, 27(1117):1-21.
Jenitha, K. (2023). Antimicrobial activity and phytochemical analysis of extract of Centella asiatica. International Journal of Zoological Investigations, 9(2):160-168.
Kathirvel, A., Ramalingam, S., Harini, S. T., Ranjith, N., Kumar, G. S., Lalithambigai, K., Atchudan, R., Habila, M. A., Aljuwayid, A. M., & Yun, H. K. (2025). Eco-friendly synthesis of zirconium dioxide nanoparticles from Toddalia asiatica: Applications in dye degradation, antioxidant and antibacterial activity. Nanomaterials, 15(84):1-18.
Kumari, S., & Kumar, P. (2023). Design and computational analysis of an mmp9 inhibitor in hypoxia-induced glioblastoma multiforme. ACS Omega, 8(11):10565-10590.
Lane, T. R., Harris, J., Urbina, F., & Ekins S. (2023). Comparing LD50/LC50 machine learning models for multiple species. ACS Chemical Health & Safety, 30(2):83-97.
Li, M., Han, R., Li, J., Wu, W., & Gu J. (2024). Research progress in acute oral toxicity testing methods. International Journal of Biology and Life Sciences, 6(1):19-22.
Liu, Y. T., Chuang, Y. C., Lo, Y. S., Lin, C. C., His, Y. T., Hsieh, M. J., & Chen M. K. (2020). Asiatic acid, extracted from Centella asiatica and induces apoptosis pathway through the phosphorylation p38 mitogen-activated protein kinase in cisplatin-resistant nasopharyngeal carcinoma cells. Biomolecules, 10(184):1-13.
Liu, Y., Yang, X., Gan, J., Chen, S., Xiao, Z. X., & Cao Y. (2022). CB-Dock2: Improved protein–ligand blind docking by integrating cavity detection, docking and homologous template fitting. Nucleic Acids Research, 50(W1):W159-W164.
Magaña, A. A., Wright, K., Vaswani, A., Caruso, M., Reed, R. L., Bailey, C. F., Nguyen, T., Gray, N. E., Soumyanath, A., Quinn, J., Stevens, J. F., & Maier C. S. (2020). Integration of mass spectral fingerprinting analysis with precursor ion (MS1) quantification for the characterisation of botanical extracts: application to extracts of Centella asiatica (L.) urban. Phytochemical Analysis, 31(6):722-738.
Maitra, P., Basak, P., Okamoto, K., Miyoshi, S., Dutta, S., & Bhattacharya, S. (2022). Asiatic acid inhibits intracellular Shigella flexneri growth by inducing antimicrobial peptide gene expression. Journal of Applied Microbiology, 134(2):1-12.
Menon, S., Mishra, A., Kathirvel, M., Biju, C., Prudhvi, P., & Rao, G. E. (2023). Phytochemical analysis and in vitro evaluation of antibacterial and antidermatophytic activity of Centella asiatica (L.) urban extracts. Medicinal Plants-International Journal of Phytomedicines and Related Industries, 15(3):571-578.
Micheli, L., Toti, A., Lucarini, E., Ferrara, V., Ciampi, C., Olivero, G., Pittaluga, A., Mattoli, L., Pelucchini, C., Burico, M., Lucci, J., Carrino, D., Pacini, A., Pallanti, S., Mannelli, L. D. C., & Ghelardini, C. (2022). Efficacy of a vegetal mixture composed of Zingiber officinale, Echinacea purpurea, and Centella asiatica in a mouse model of neuroinflammation: In vivo and ex vivo analysis. Frontiers in Nutrition, 9 (887378):1-17.
Mohapatra, P., Ray, A., Sandeep, I. S., Parida, R., & Mohanty, S. (2021). Genetic and biochemical stability of in vitro raised and conventionally propagated Centella asiatica-A valuable medicinal herb. South African Journal of Botany, 140(2021):444-453.
Nguyen, V. B., Wang, S. L., Phan, T. Q., Pham, T. H. T., Huang, H. T., Liaw, C. C., & Nguyen, A. D. (2023). Screening and elucidation of chemical structures of novel mammalian α-Glucosidase inhibitors targeting anti-diabetes drug from herbals used by E De ethnic tribe in Vietnam. Pharmaceuticals, 16(756):1-20.
Pham, X. N., Nguyen, H. T., & Pham, N. T. (2020). Green synthesis and antibacterial activity of HAp@ Ag nanocomposite using Centella asiatica (L.) urban extract and eggshell. International Journal of Biomaterials, 2020(8841221):1-12.
Pillai, A. R. S., Bhosale, Y. K., & Roy, S. (2024). Extraction of bioactive compounds from Centella asiatica and enlightenment of its utilization into food packaging: A review. International Journal of Food Science, 2024(1249533):1-16.
Qurrotuaini, S., Wiqoyah, N., & Mustika, A. (2022). Antimicrobial activity of ethanol extract of Centella asiatica leaves on Proteus mirabilis, Proteus vulgaris, and Yersinia enterocolitica in vitro. Molecular and Cellular Biomedical Sciences, 6(3):135-140.
Rafi, M., Madya, M. M., Karomah, A. H., Septaningsih, D. A., Ridwan, T., Rohaeti, E., Aisyah, S., Idroes, R. (2024). LC-HRMS-based metabolomics for profiling the metabolites in different plant parts of Centella asiatica. HAYATI Journal of Biosciences, 31(6):1106-1115.
Rukisah, R., Maulianawati, D., & Cahyadi, J. (2019). In vitro antibacterial efficacy of leaves extract of Centella asiatica against Vibrio harveyi and Aeromonas hydrophila. Indonesian Aquaculture Journal, 14(2):69-74.
Selvarajan, V. S., Selvarajan, R., Pandiyan, J., & Abia, A. L. K. (2023). Unveiling the potency and harnessing the antibacterial activities of plant oils against foodborne pathogens. Microbiology Research, 14(3):1291-1300.
Shankar, S., & Sathiavelu, M. (2024). Paradendryphiella arenariae an endophytic fungus of Centella asiatica inhibits the bacterial pathogens of fish and shellfish. Frontiers in Microbiology, 15:1-17.
Si, Z., Ma, Z., Luo, F., Shi, J., Huang, J., Wang, Z., Wen, Y., & Han S. (2023). Establishment of SYBR green I real-time PCR for detection of Streptococcus agalactiae in aquaculture waters. Journal of Applied Ichthyology, 2023(9199300):1-9.
Sieberi, B. M., Omwenga, G. I., Wambua, R. K., Samoei, J. C., & Ngugi, M. P. (2020). Screening of the dichloromethane: Methanolic extract of Centella asiatica for antibacterial activities against Salmonella typhi, Escherichia coli, Shigella sonnei, Bacillus subtilis, and Staphylococcus aureus. The Scientific World Journal, 2020(6378712):1-8.
Singh, P., Sharma, A., Bordoloi, M., & Nandi, S. P. (2023). Antimicrobial, antioxidant, GC-MS analysis and molecular docking analysis of bioactive compounds of endophyte Aspergillus flavus from Argemone mexicana. Journal of Microbiology, Biotechnology and Food Sciences, 13(1):e9970.
Sun, B., Wu, L., Wu, Y., Zhang, C., Qin, L., Hayashi, M., Kudo, M., Gao, M., & Liu, T. (2020). Therapeutic potential of Centella asiatica and its triterpenes: A review. Frontiers in Pharmacology, 11:1-24.
Taghizadeh, M., & Jalili, S. (2024). Phytochemical content, antioxidant properties, and antibacterial activities of Centella asiatica L. Natural Product Research, 38(20):3693-3698.
Taleghani, A., Eghbali, S., Moghimi, R., & Mokaber‐Esfahani M. (2024). Crataegus pentagyna willd. fruits, leaves and roots: Phytochemicals, antioxidant and antimicrobial potentials. BMC Complementary Medicine and Therapies, 24(126):1-20.
Tripathy, S., Verma, D. K., Thakur, M., Chakravorty, N., Singh, S., & Srivastav, P. P. (2022). Recent trends in extraction, identification and quantification methods of Centella asiatica phytochemicals with potential applications in food industry and therapeutic relevance: A review. Food Bioscience, 49(101864).
Wang, R., Huang, H., Du, W., Xia, G., & Tan, Y. (2024a). Network pharmacology and in vivo validation to explore the potential active ingredients and mechanisms of Ziyin Buyang formula in diminished ovarian reserve. Natural Product Communications, 19(4):1-13.
Wang, D., Li, J., Zhu, G., Zhao, K., Jiang, W., Li, H., Wang, W., Kumar, V., Dong, S., Zhu, W., & Tian, X. (2020). Mechanism of the potential therapeutic candidate Bacillus subtilis BSXE-1601 against shrimp pathogenic Vibrios and multifunctional metabolites biosynthetic capability of the strain as predicted by genome analysis. Frontiers in Microbiology, 11(581802):1-15.
Wang, X., Zhang, Y., Song, A., Wang, H., Wu, Y., Chang, W., Tian, B., Xu, J., Dai, H., Ma, Q., Wang, C., & Zhou, X. (2024b). A printable hydrogel loaded with medicinal plant extract for promoting wound healing. Advanced Healthcare Materials, 13(8):e2303017.
Wei, C., Cui, P., & Liu, X. (2023). Antibacterial activity and mechanism of madecassic acid against Staphylococcus aureus. Molecules, 28(1895):1-17.
Wong, J. X., & Ramli, S. (2021). Antimicrobial activity of different types of Centella asiatica extracts against foodborne pathogens and food spoilage microorganisms. LWT-Food Science and Technology, 142(111026).
Wu, Z., Jiang, D., Wang, J., Hsieh, C. Y., Cao, D., & Hou T. (2021). Mining toxicity information from large amounts of toxicity data. Journal of Medicinal Chemistry, 64(10):6924-6936.
Xu, L., Zhang, J., Wang, Y., Zhang, Z., Wang, F., & Tang, X. (2021). Uncovering the mechanism of Ge-Gen-Qin-Lian decoction for treating ulcerative colitis based on network pharmacology and molecular docking verification. Bioscience Reports, 41(BSR20203565):1-25.
Yang, L., Marney, L., Magaña, A. A., Choi, J., Wright, K., Mcferrin, J., Gray, N. E., Soumyanath, A., Stevens, J. F., & Maier, C. S. (2023). Quantification of caffeoylquinic acids and triterpenes as targeted bioactive compounds of Centella asiatica in extracts and formulations by liquid chromatography mass spectrometry. Journal of Chromatography Open, 4(100091):1-10.
Yusof, N. N. M., Idris, K., Rahman, T. A. F. T. A., Adnan, L. A., & Aziz, N. A. A. (2020). Spectroscopy analysis of antimicrobial compound in Centella asiatica extract. Malaysian Journal of Science Health & Technology, 7(1):65-70.
Zafar, F., Gupta, A., Thangavel, K., Khatana, K., Sani, A. A., Ghosal, A., Tandon, P., & Nishat, N. (2020). Physicochemical and pharmacokinetic analysis of anacardic acid derivatives. ACS Omega, 5(11):6021-6030.
Zelellw, D. A., Dessie, G., Mengesha, E. W., Shiferaw, M. B., Merhaba, M. M., and Emishaw, S. (2021). A systemic review and meta‐analysis of the leading pathogens causing neonatal sepsis in developing countries. BioMed Research International, 2021(6626983):1-20.
Zheng, W., Lei, M., Yao, Y., Zhan, J., Zhang, Y., & Zhou Q. (2024). Mechanisms underlying the therapeutic effects of Semen cuscutae in treating recurrent spontaneous abortion based on network pharmacology and molecular docking. Frontiers in Molecular Biosciences, 11(1282100):1-13.
Zhang, Y., Yang, Z., & Cock I. E. (2020). Centella asiatica (l.) urban leaf extracts inhibit the growth of bacterial triggers of selected autoimmune inflammatory diseases and potentiate the activity of conventional antibiotics. Pharmacognosy Communications, 10(3):119-129.