Date Log
1. Copyright of the article is transferred to the journal, by the knowledge of the author, whilst the moral right of the publication belongs to the author.
2. The legal formal aspect of journal publication accessibility refers to Creative Commons Atribusi-Non Commercial-Share alike (CC BY-NC-SA), (https://creativecommons.org/licenses/by-nc-sa/4.0/)
3. The articles published in the journal are open access and can be used for non-commercial purposes. Other than the aims mentioned above, the editorial board is not responsible for copyright violation
The manuscript authentic and copyright statement submission can be downloaded ON THIS FORM.
Komunitas Fitoplankton Pada Sistem Budidaya Intensif Udang Vaname, Litopenaeus vannamei di Probolinggo, Jawa Timur
[Phytoplankton Community at Intensive Cultivation System of White Shrimp, Litopenaeus vannamei in Pr
Corresponding Author(s) : Nasrullah Bai Arifin
Jurnal Ilmiah Perikanan dan Kelautan, Vol. 10 No. 1 (2018): Jurnal ilmiah perikanan dan kelautan
Abstract
Abstrak
Fitoplankton merupakan sumber pakan alami pada budidaya udang di tambak. Produktivitas fitoplankton dapat meningkat seiring dengan bertambahnya kandungan nutrien di tambak. Sisa metabolisme dan pakan merupakan sumber nutrien bagi pertumbuhan fitoplankton di tambak. Penelitian ini bertujuan untuk mengevaluasi produktivitas dan mengidentifikasi jenis fitoplankton pada sistem budidaya intensif udang vaname, Litopenaeus vannamei. Penelitian ini dilakukan pada tiga petak tambak budidaya intensif udang vaname diProbolinggo, Jawa Timur. Pengambilan sampel air tambak dilakukan pada hari ke-17 dan hari ke-87 masa budidaya masing-masing dua kali setiap petak. Empat parameter lingkungan yaitu total ammonia nitrogen (TAN), nitrat, orthophosphate, total padatan tersupensi (TSS), dan klorofil diukur pada setiap sampel air tambak. Selain itu, kami juga mengidentifikasi dan menghitung fitoplankton pada setiap sampel. Hasil penelitian ini menunjukkan bahwa produktivitas pada ke tiga tambak berkisar antara 22.893,83 kg/ha sampai 23.600,61 kg/ha dengan ukuran panen 12,74 g/ekor sampai 14,35 g/ekor. Selama masa budidaya, konsentrasi TAN, TSS, dan klorofil meningkat seiring dengan semakin lamanya masa budidaya. Sementara itu, rerata kandungan nitrat dan orthophosphate cenderung menurun seiring bertambahnya masa budidaya. Jenis fitoplankton yang teridentifikasi yaitu dalam genus Oocystis, Chlorella, Nannochloropsis, Chaetoceros, Stephanodiscus, Nitzschia,Coscinodiscus, Cyclotella, dan Ulothrix. Fitoplankton dari kelompok Chlorophyta merupakan jenis yangdominan pada tambak 1 dan 2, sedangkan tambak 3 didominasi oleh kelompok Diatom. Penelitian ini mengindikasikan bahwa keberadaan fitoplankton di tambak mendukung ketersediaan pakan alami dan lingkungan yang baik bagi budidaya udang.
Abstract
Phytoplankton is a source of natural feed for shrimp cultivation in the pond. Phytoplankton productivity increases by the increased nutrient content in the pond. Feed and metabolic waste is the sources of nutrient for phytoplankton growth. This study aimed to evaluate productivity and identify phytoplankton at intensive white leg shrimp, Litopenaeus vannamei cultivation system. This study was conducted at three intensive white shrimp located in Probolinggo, East Java. Samples were collected on the early and the late of culture period (day 17 and 87 after stocking). Four environmental parameters including total ammonia nitrogen (TAN), nitrate, orthophosphate, total suspended solids (TSS), and chlorophyll-a were measured. Identification and density of phytoplankton were also performed of each pond. The result showed that the productivity of three ponds was 22,893.83 kg/ha to 23,600.61 kg/ha with an average size of 12.74 g to 14.35 g. During culture period, the concentration of TAN, TSS, and chlorophyll-a tended to increase. Meanwhile, the average of both nitrate andorthophosphate tended to decline. Several phytoplankton identified in this study were in the genus of Oocystis,Chlorella, Nannochloropsis, Chaetoceros, Stephanodiscus, Nitzschia, Coscinodiscus, Cyclotella, and Ulothrix. Phytoplankton of the group Chlorophyta is predominance for pond 1 and 2, while pond 3 was dominated by phytoplankton in the group of Diatom/Baccillariophyta. This study indicated that the presence of phytoplankton in the pond provides natural feed and good environmental condition for shrimp cultivation.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Biao X, L., Tingyou, and Yi, W., Xipei, Q. (2009). Variation in the water quality of organic and conventional shrimp ponds in a coastal environment from Eastern China. Bulgarian Journal of Agricultural Science, 15: 47"’59.
- Boyd, C. E. (2003). Guidelines for aquaculture effluent management at the farm-level. Aquaculture, 226: 101"’112.
- Cardozo, A. P., Britto, V. O., Oderbrecht, C. (2011). Temporal variability of plankton and nutrients in shrimp culture ponds vs. adjacent estusrine water. Pan-American. Journal of Aquatic Sciences, 6: 28–43.
- Case M, Leca, E. E., Leitao, E. E., Sant'Anna, S. N., Schwamborn, R., & Junior, A. T. D., (2008). Plankton community as an indicator of water quality in tropical shrimp culture ponds. Marine Pollution Bulletin, 56:1343–1352.
- Chainark, S., & Boyd, C. E. (2010). Water and sediment quality, phytoplankton communities, and channel catfish production in sodium nitrate-treated ponds. Journal of Applied Aquaculture, 22: 171–185.
- Cremen, M. C. M., Martinez-Goss, M. R., Corre Jr, V. L., & Azanza, R. V. (2016). Phytoplankton bloom in commercial shrimp ponds using green-water technology. Journal Apply Phycology, 19: 615–624.
- Ekasari, J, Rivandi, D. R., Firdaus, S. P., Surawidjaja, E. H., Zairin, M., Bossier, P., & De Schryver. (2015). Biofloc technology positively affects Nile tilapia Oreochromis niloticus larvae performance. Aquaculture, 441: 72"’77
- Fakhri, M., Hariati, A. M., & Prayitno, A. (2013). In vitro antibacterial activity of sponge Acanthella cavernosa against Vibrio harveyi. Journal of Applied Environmental and Biological Sciences, 3: 1-5.
- Fakhri, M., Budianto, B., Yuniarti, B., Hariati, A. M. (2015). Variation in water quality at different intensive whiteleg shrimp, Litopenaeus vannamei, farms in East Java, Indonesia. Nature Environment and Pollution Technology, 14: 563–566.
- Galvez, A. O., Figueiredo, C. V., Da Silva, C., Marinho, Y. F., Vinatea, L., Brito, L. O. (2015). Plankton communities in shrimp monoculture, integrated biofloc system. Missouri, USA: Global Aquaculture Advocate Magazine, 18 (3): 36"’38.
- Hadi, N. A., Naqqiuddin, M. A., Zulkifli, S. Z., Kamal, A. H. M., Omar, H., & Ismail A. (2016). Phytoplankton diversity in tiger shrimp pond in Marlimau, Malacca. Malaysia Ecology Seminar, 223–226.
- Keawtawee, T., Fukami, K., Songsangjinda, P., & Muangyao, P. (2012). Nutrient, phytoplankton and harmful algal blooms in the shrimp culture ponds in Thailand. Kuroshio Science, 5: 129– 136.
- Piedrahita, R. H. (2003). Reducing the potential environmental impact of tank aquaculture effluents through intensification and recirculation. Aquaculture, 226: 35"’44.
- Prescott, G. W. (1962). Algae of the Western Great Lakes Area. USA: WM. C. Brown Company Publisher.
- Schrader, K. K., Green, B. W., & Perschbacher, P. W. 2011. Development of phytoplankton communities and common off-flavors in a biofloc technology system used for the culture of channel catfish Ictalurus punctatus. Aquaculture Engineering, 45: 118"’126.
- Shaari, A. L., Surif, M., Latiff, F. A., Omar, W. M. W., & Ahmad, M. N. (2011). Monitoring of water quality and microalgae species composition on Penaeus monodon ponds in Pupalu Pinang, Malaysia. Tropical Life Sciences Research, 22: 51–69.
- Taw, N. 2014. Shrimp Farming In Biofloc System: Review and Recent Developments. Australia: World Aquaculture Conference.
- Taw, N. 2005. Shrimp farming in Indonesia evolving industry responds to varied issues. Missouri, USA: Global Aquaculture Advocate Magazine, 8: 65–67.
References
Biao X, L., Tingyou, and Yi, W., Xipei, Q. (2009). Variation in the water quality of organic and conventional shrimp ponds in a coastal environment from Eastern China. Bulgarian Journal of Agricultural Science, 15: 47"’59.
Boyd, C. E. (2003). Guidelines for aquaculture effluent management at the farm-level. Aquaculture, 226: 101"’112.
Cardozo, A. P., Britto, V. O., Oderbrecht, C. (2011). Temporal variability of plankton and nutrients in shrimp culture ponds vs. adjacent estusrine water. Pan-American. Journal of Aquatic Sciences, 6: 28–43.
Case M, Leca, E. E., Leitao, E. E., Sant'Anna, S. N., Schwamborn, R., & Junior, A. T. D., (2008). Plankton community as an indicator of water quality in tropical shrimp culture ponds. Marine Pollution Bulletin, 56:1343–1352.
Chainark, S., & Boyd, C. E. (2010). Water and sediment quality, phytoplankton communities, and channel catfish production in sodium nitrate-treated ponds. Journal of Applied Aquaculture, 22: 171–185.
Cremen, M. C. M., Martinez-Goss, M. R., Corre Jr, V. L., & Azanza, R. V. (2016). Phytoplankton bloom in commercial shrimp ponds using green-water technology. Journal Apply Phycology, 19: 615–624.
Ekasari, J, Rivandi, D. R., Firdaus, S. P., Surawidjaja, E. H., Zairin, M., Bossier, P., & De Schryver. (2015). Biofloc technology positively affects Nile tilapia Oreochromis niloticus larvae performance. Aquaculture, 441: 72"’77
Fakhri, M., Hariati, A. M., & Prayitno, A. (2013). In vitro antibacterial activity of sponge Acanthella cavernosa against Vibrio harveyi. Journal of Applied Environmental and Biological Sciences, 3: 1-5.
Fakhri, M., Budianto, B., Yuniarti, B., Hariati, A. M. (2015). Variation in water quality at different intensive whiteleg shrimp, Litopenaeus vannamei, farms in East Java, Indonesia. Nature Environment and Pollution Technology, 14: 563–566.
Galvez, A. O., Figueiredo, C. V., Da Silva, C., Marinho, Y. F., Vinatea, L., Brito, L. O. (2015). Plankton communities in shrimp monoculture, integrated biofloc system. Missouri, USA: Global Aquaculture Advocate Magazine, 18 (3): 36"’38.
Hadi, N. A., Naqqiuddin, M. A., Zulkifli, S. Z., Kamal, A. H. M., Omar, H., & Ismail A. (2016). Phytoplankton diversity in tiger shrimp pond in Marlimau, Malacca. Malaysia Ecology Seminar, 223–226.
Keawtawee, T., Fukami, K., Songsangjinda, P., & Muangyao, P. (2012). Nutrient, phytoplankton and harmful algal blooms in the shrimp culture ponds in Thailand. Kuroshio Science, 5: 129– 136.
Piedrahita, R. H. (2003). Reducing the potential environmental impact of tank aquaculture effluents through intensification and recirculation. Aquaculture, 226: 35"’44.
Prescott, G. W. (1962). Algae of the Western Great Lakes Area. USA: WM. C. Brown Company Publisher.
Schrader, K. K., Green, B. W., & Perschbacher, P. W. 2011. Development of phytoplankton communities and common off-flavors in a biofloc technology system used for the culture of channel catfish Ictalurus punctatus. Aquaculture Engineering, 45: 118"’126.
Shaari, A. L., Surif, M., Latiff, F. A., Omar, W. M. W., & Ahmad, M. N. (2011). Monitoring of water quality and microalgae species composition on Penaeus monodon ponds in Pupalu Pinang, Malaysia. Tropical Life Sciences Research, 22: 51–69.
Taw, N. 2014. Shrimp Farming In Biofloc System: Review and Recent Developments. Australia: World Aquaculture Conference.
Taw, N. 2005. Shrimp farming in Indonesia evolving industry responds to varied issues. Missouri, USA: Global Aquaculture Advocate Magazine, 8: 65–67.