Date Log
Copyright (c) 2022 Jurnal Ilmiah Perikanan dan Kelautan
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
1. Copyright of the article is transferred to the journal, by the knowledge of the author, whilst the moral right of the publication belongs to the author.
2. The legal formal aspect of journal publication accessibility refers to Creative Commons Atribusi-Non Commercial-Share alike (CC BY-NC-SA), (https://creativecommons.org/licenses/by-nc-sa/4.0/)
3. The articles published in the journal are open access and can be used for non-commercial purposes. Other than the aims mentioned above, the editorial board is not responsible for copyright violation
The manuscript authentic and copyright statement submission can be downloaded ON THIS FORM.
The Activity of Mixed Microalgae Polysaccharides from Indonesia as Anti-Malaria in Vitro
Corresponding Author(s) : Lucia Tri Suwanti
Jurnal Ilmiah Perikanan dan Kelautan, Vol. 14 No. 2 (2022): JURNAL ILMIAH PERIKANAN DAN KELAUTAN
Abstract
Highlight Research
- One of the content of microalgae that is beneficial for health is polysaccharides
- Polysaccharides of Indonesian microalgae can be promoted as anti-malarial
- Polysaccharides from Glagah, Spirulina and East Java microalgae inhibited the growth of plasmodium in vitro and had IC50 values of 3.18 µg/mL, 5.43µg/mL and 9.87 µg/mL, respectively
Abstract
Malaria is an infectious disease caused by protozoan parasites of the genus Plasmodium that categorized as deadliest diseases in the world. Artemisinin and its derivatives are still recommended drugs for malaria therapy, however, there have been indications that Plasmodium parasites are resistant to this drug. Therefore, a study on polysaccharides from microalgae may be a potential as bioactive compound for anti-malaria. The aim of this study was to determine the effectiveness of the mixed microalgae polysaccharides as anti-malarial in vitro. Polysaccharides were extracted from three microalgae Spirulina sp., mixed microalgae Glagah and mixed microalgae East Java using the alkaline extraction method. The anti-malarial activity test refers to the concentration of polysaccharides used in calculating the IC50 value by probit analysis. The concentration of polysaccharides of the three microalgae used were 0; 0.01; 0.01, 1, 10 and 100 µg/mL. The results showed that the IC50 values of polysaccharides of Glagah, Spirulina sp. and East Java microalgae were 3.18 µg/mL, 5.43µg/mL, and 9.87 µg/mL, respectively. In Conclusion, polysaccharides of Indonesian mixed microalgae can be promoted as anti-malarial.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Afililla, Z., Suwanti, L. T, Puspitasari, H., Suyono, E. A., Budiman, A., Koerniawan, M. D., & Siregar, U. J. (2020). Inability of polysaccharides of Spirulina platensis to protect hepatocyte cells line on Toxoplasma gondii infection in vitro. Journal of Global Pharma Technology, 12(1):654-659.
- Afonso, A., Hunt, P., Cheesman, S., Alves, A. C., Cunha, C. V., Do Rosario, V., & Cravo, P. (2006). Malaria parasites can develop stable resistance to artemisinin but lack mutations in candidate genes atp6 (encoding the sarcoplasmic and endoplasmic reticulum Ca2+ ATPase), tctp, mdr1, and cg10. Antimicrobial Agents Chemotherapy, 50(2):480-489.
- Balikagala, B., Fukuda, N., Ikeda, M., Osbert, T. Katuro, O. T., Tachibana, S. I., Yamauchi, M., Opio, W., Emoto, S., Anywar, D. A., Kimura, E., Palacpac, N. M. Q., Odongo"‘Aginya, E. I., Ogwang, M., Horii, T., & Mita, T. (2021). Evidence of artemisinin-resistant malaria in Africa. New England Journal of Medicine, 385:1163-71.
- Boyle, M. J., Skidmore, M., Dickerman, B., Cooper, L., Devlin, A., Yates, E., Horrocks, P., Freeman, C., Chai, W., & Beeson, J. G. (2017). Identification of heparin modifications and polysaccharide inhibitors of Plasmodium falciparum merozoite invasion that have potential for novel drug development. Antimicrobial Agents and Chemotherapy, 61:e00709-17.
- Chen, C. Y., Yeh, K. L., Aisyah, R., Lee, D. J., & Chang, J. S. (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel
- production: a critical review. Bioresource Technology. 102(1):71-81.
- Chen, J. H., Lim, J. D., Sohn, E. H., Choi, Y. S., & Han, E. T. (2009). Growth-inhibitory effect of a fucoidan from brown seaweed Undaria pinnatifida on Plasmodium parasites. Parasitology Research, 104:245-250.
- Denou, A., Togala, A., Inngjerdingen, K., & Zang, B. Z. (2019). Immunomodulatory activities of polysaccharides isolated from plants used as anti-malarial in Mali. Journal of Pharmacognosy and Phytotherapy, 11(3):35-42.
- Elyazar, I. R. F., Hay, S. I., & Baird, J. K. (2011). Malaria distribution, prevalence, drug resistance and control in Indonesia. Advances in Parasitology, 74:41-175.
- Falkenberg, M., Nakano, E., Zambotti-Villela, L., Zatelli, G. A., Philippus, A. C., Imamura, K. B., Velasquez, A. M. A., Freitas, R. P., Tallarico, L. de F., Colepicolo, P., & Graminha M. A. S. (2019). Bioactive compounds against neglected diseases isolated from macroalgae: a review. Journal of Applied Phycology, 31(5):797-823.
- Gügi, B., Le Costaouec, T., Burel, C., Lerouge, P., Helbert, W., & Bardor, M. (2015). Diatom-specific oligosaccharide and polysaccharide structures help to unravel biosynthetic capabilities in diatoms. Marine Drugs, 13(9):5993-6018.
- Hafid, A. F., Puliansari, N., Lestari, N. S., Tumewu, L., Rahman, A., & Widyawaruyanti, A. (2016). Skrining aktivitas antimalaria beberapa tanaman Indonesia hasil eksplorasi dari Hutan Raya Cangar, Batu-Malang, Jawa Timur. Jurnal Farmasi Dan Ilmu Kefarmasian Indonesia, 3(1):6-11.
- Jiang, L., Wang, Y., Yin, Q., Liu, G., Liu, H., Huang, Y., & Li, B. (2017). Phycocyanin: a potential drug for cancer treatment. Journal of Cancer, 8(17):3416-3429.
- Khamis, D., Mouden, C. E., Kura, K., & Bonsall, M. B. (2018). Optimal control of malaria: combining vector interventions and drug therapies. Malaria Journal, 17(174):1-18.
- Leliaert, F., Smith, D. R., Moreau, H., Herron, M. D., Verbruggen, H., Delwiche, C. F., & Clerk, O. D. (2012). Phylogeny and molecular evolution of the green algae. Critical Reviews in Plant Sciences, 31:1-46.
- Marques, J., Vilanova, E., Mourao, P. A. S., & Busquets, X. F. (2016). Marine organism sulfated polysaccharides exhibiting significant anti-malarial activity and inhibition of red blood cell invasion by Plasmodium. Scientific Reports, 6(24368):1-14.
- Mutanda, T., Naidoo, D., Bwapwa, J. K., & Anandraj, A. (2020) Biotechnological applications of microalgal oleaginous compounds: current trends on microalgal bioprocessing of products. Frontiers Energy Research, 8:598803.
- Pankaj, P. P., Seth, R. K., Mallick, N., & Biswas, S. (2010). Isolation and purification of c-phycocyanin from nostoc muscorum (cyanophyceae and cyanobacteria) exhibits antimalarial activity in vitro. Journal of Advanced Laboratory Research in Biology, 1(2):86–91.
- Parhizgar, A. R., & Tahghighi, A. (2017). Introducing new antimalarial analogues of chloroquine and amodiaquine: A narrative review. Iran Journal of Medical Science, 42(2):115-128.
- Selvarajan, R., Felföldi, T., Tauber, T., Sanniyasi, E., Sibanda, T., & Tekere, M. (2015). Screening and evaluation of some green algal strains (Chlorophyceae) isolated from freshwater and soda lakes for biofuel production. Energies, 8(7):7502-7521.
- Setyowati, E. A., Isnansetyo, A., Djohan, T. S., Nurcahyo, R. W., & Prabandari, E. E. (2019). Anti-malarial activity of microalgae extracts based on inhibition of PfMQO, a mitochondrial Plasmodium falciparum enzyme. Pharmacognosy Journal, 11(6):1477-1482.
- Simamora, D., & Fitri, L. E. (2007). Antimalarial drug resistance: mechanism and the role of drug combination in preventing it. Jurnal Kedokteran Brawijaya, 23(2):82-88.
- Suyono, E. A., Fahrunnida, Nopitasari, S., & Utama, I. V. (2016). Identification of microalgae species and lipid profiling of Glagah consortium for biodiesel development from local marine resource. ARPN Journal of Engineering and Applied Science, 11(16):9970-9973.
- Suyono, E. A., Retnaningrum, E., & Ajijah, N. (2018). Bacterial symbionts isolated from mixed microalgae culture of Glagah strains. International Journal of Agriculture and Biology, 20:33-36.
- Talapko, J., Å krlec, I., Alebic, T., Jukic, M., & Vcev, A. (2019). Review malaria: the past and the present. Microorganisms, 7(6):179.
- Wang, B., Liu, Q., Huang, Y., Yuan, Y., Ma, Q., Du, M., Cai, T., & Cai, Y. (2018). Extraction of polysaccharide from Spirulina and evaluation of its activities. Evidence-Based Complementary and Alternative Medicine, 1:1-9.
- Wang, J., Hu, S., Nie, S., Yu, Q., & Xie, M. (2016). Reviews on mechanisms of in vitro antioxidant activity of polysaccharides. Oxidative Medicine and Cellular Longevity, 2016(5692852):1-13.
- Widyawaruyanti, A., Devi, A. P., Fatria, N., Tumewu, L., Tantular, I. S., & Hafid, A. F. (2014). In vitro antimalarial activity screening of several Indonesian plants using Hrp2 assay. International Journal of Pharmacy and Pharmaceutical Science, 6(6):125-128.
- World Health Organization (WHO). (2020). World malaria report 2020: 20 years of global progress and challenges. Retrieved from www.who.int.
- Wulandari, D. A., Setyaningsih, I., & Asih, P. B. S. (2016). Extraction and in vitro antimalarial activity phycocyanin from Spirulina platensis. Jurnal Pengolahan Hasil Perikanan Indonesia, 19(1):17-25.
- Zakiyah, U., Mulyanto, Suwanti, L. T., Koerniawan, M. D., Suyono, E. A., Budiman, A., & Siregar, U. J. (2020). Diversity and distribution of microalgae in coastal areas of East Java, Indonesia. Biodiversitas, 21:1149-1159.
- Zeidan, A. A., Poulsen, V. K., Janzen, T., Buldo. P., Derkx, P. M. F., í˜regaard, G., & Neves, A. R. (2017). Polysaccharide production by lactic acid bacteria: from genes to industrial applications. FEMS Microbiology Reviews, 41(Supp_1):S168–S200.
- Zhu, X., Pan, Y., Zheng, L., Cui, L., & Coa, Y. (2012). Polysaccharides from the Chinese medicinal herb Achyranthes bidentata enhance anti-malarial immunity during Plasmodium yoelii 17XL infection in mice. Malaria Journal, 11:49.
References
Afililla, Z., Suwanti, L. T, Puspitasari, H., Suyono, E. A., Budiman, A., Koerniawan, M. D., & Siregar, U. J. (2020). Inability of polysaccharides of Spirulina platensis to protect hepatocyte cells line on Toxoplasma gondii infection in vitro. Journal of Global Pharma Technology, 12(1):654-659.
Afonso, A., Hunt, P., Cheesman, S., Alves, A. C., Cunha, C. V., Do Rosario, V., & Cravo, P. (2006). Malaria parasites can develop stable resistance to artemisinin but lack mutations in candidate genes atp6 (encoding the sarcoplasmic and endoplasmic reticulum Ca2+ ATPase), tctp, mdr1, and cg10. Antimicrobial Agents Chemotherapy, 50(2):480-489.
Balikagala, B., Fukuda, N., Ikeda, M., Osbert, T. Katuro, O. T., Tachibana, S. I., Yamauchi, M., Opio, W., Emoto, S., Anywar, D. A., Kimura, E., Palacpac, N. M. Q., Odongo"‘Aginya, E. I., Ogwang, M., Horii, T., & Mita, T. (2021). Evidence of artemisinin-resistant malaria in Africa. New England Journal of Medicine, 385:1163-71.
Boyle, M. J., Skidmore, M., Dickerman, B., Cooper, L., Devlin, A., Yates, E., Horrocks, P., Freeman, C., Chai, W., & Beeson, J. G. (2017). Identification of heparin modifications and polysaccharide inhibitors of Plasmodium falciparum merozoite invasion that have potential for novel drug development. Antimicrobial Agents and Chemotherapy, 61:e00709-17.
Chen, C. Y., Yeh, K. L., Aisyah, R., Lee, D. J., & Chang, J. S. (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel
production: a critical review. Bioresource Technology. 102(1):71-81.
Chen, J. H., Lim, J. D., Sohn, E. H., Choi, Y. S., & Han, E. T. (2009). Growth-inhibitory effect of a fucoidan from brown seaweed Undaria pinnatifida on Plasmodium parasites. Parasitology Research, 104:245-250.
Denou, A., Togala, A., Inngjerdingen, K., & Zang, B. Z. (2019). Immunomodulatory activities of polysaccharides isolated from plants used as anti-malarial in Mali. Journal of Pharmacognosy and Phytotherapy, 11(3):35-42.
Elyazar, I. R. F., Hay, S. I., & Baird, J. K. (2011). Malaria distribution, prevalence, drug resistance and control in Indonesia. Advances in Parasitology, 74:41-175.
Falkenberg, M., Nakano, E., Zambotti-Villela, L., Zatelli, G. A., Philippus, A. C., Imamura, K. B., Velasquez, A. M. A., Freitas, R. P., Tallarico, L. de F., Colepicolo, P., & Graminha M. A. S. (2019). Bioactive compounds against neglected diseases isolated from macroalgae: a review. Journal of Applied Phycology, 31(5):797-823.
Gügi, B., Le Costaouec, T., Burel, C., Lerouge, P., Helbert, W., & Bardor, M. (2015). Diatom-specific oligosaccharide and polysaccharide structures help to unravel biosynthetic capabilities in diatoms. Marine Drugs, 13(9):5993-6018.
Hafid, A. F., Puliansari, N., Lestari, N. S., Tumewu, L., Rahman, A., & Widyawaruyanti, A. (2016). Skrining aktivitas antimalaria beberapa tanaman Indonesia hasil eksplorasi dari Hutan Raya Cangar, Batu-Malang, Jawa Timur. Jurnal Farmasi Dan Ilmu Kefarmasian Indonesia, 3(1):6-11.
Jiang, L., Wang, Y., Yin, Q., Liu, G., Liu, H., Huang, Y., & Li, B. (2017). Phycocyanin: a potential drug for cancer treatment. Journal of Cancer, 8(17):3416-3429.
Khamis, D., Mouden, C. E., Kura, K., & Bonsall, M. B. (2018). Optimal control of malaria: combining vector interventions and drug therapies. Malaria Journal, 17(174):1-18.
Leliaert, F., Smith, D. R., Moreau, H., Herron, M. D., Verbruggen, H., Delwiche, C. F., & Clerk, O. D. (2012). Phylogeny and molecular evolution of the green algae. Critical Reviews in Plant Sciences, 31:1-46.
Marques, J., Vilanova, E., Mourao, P. A. S., & Busquets, X. F. (2016). Marine organism sulfated polysaccharides exhibiting significant anti-malarial activity and inhibition of red blood cell invasion by Plasmodium. Scientific Reports, 6(24368):1-14.
Mutanda, T., Naidoo, D., Bwapwa, J. K., & Anandraj, A. (2020) Biotechnological applications of microalgal oleaginous compounds: current trends on microalgal bioprocessing of products. Frontiers Energy Research, 8:598803.
Pankaj, P. P., Seth, R. K., Mallick, N., & Biswas, S. (2010). Isolation and purification of c-phycocyanin from nostoc muscorum (cyanophyceae and cyanobacteria) exhibits antimalarial activity in vitro. Journal of Advanced Laboratory Research in Biology, 1(2):86–91.
Parhizgar, A. R., & Tahghighi, A. (2017). Introducing new antimalarial analogues of chloroquine and amodiaquine: A narrative review. Iran Journal of Medical Science, 42(2):115-128.
Selvarajan, R., Felföldi, T., Tauber, T., Sanniyasi, E., Sibanda, T., & Tekere, M. (2015). Screening and evaluation of some green algal strains (Chlorophyceae) isolated from freshwater and soda lakes for biofuel production. Energies, 8(7):7502-7521.
Setyowati, E. A., Isnansetyo, A., Djohan, T. S., Nurcahyo, R. W., & Prabandari, E. E. (2019). Anti-malarial activity of microalgae extracts based on inhibition of PfMQO, a mitochondrial Plasmodium falciparum enzyme. Pharmacognosy Journal, 11(6):1477-1482.
Simamora, D., & Fitri, L. E. (2007). Antimalarial drug resistance: mechanism and the role of drug combination in preventing it. Jurnal Kedokteran Brawijaya, 23(2):82-88.
Suyono, E. A., Fahrunnida, Nopitasari, S., & Utama, I. V. (2016). Identification of microalgae species and lipid profiling of Glagah consortium for biodiesel development from local marine resource. ARPN Journal of Engineering and Applied Science, 11(16):9970-9973.
Suyono, E. A., Retnaningrum, E., & Ajijah, N. (2018). Bacterial symbionts isolated from mixed microalgae culture of Glagah strains. International Journal of Agriculture and Biology, 20:33-36.
Talapko, J., Å krlec, I., Alebic, T., Jukic, M., & Vcev, A. (2019). Review malaria: the past and the present. Microorganisms, 7(6):179.
Wang, B., Liu, Q., Huang, Y., Yuan, Y., Ma, Q., Du, M., Cai, T., & Cai, Y. (2018). Extraction of polysaccharide from Spirulina and evaluation of its activities. Evidence-Based Complementary and Alternative Medicine, 1:1-9.
Wang, J., Hu, S., Nie, S., Yu, Q., & Xie, M. (2016). Reviews on mechanisms of in vitro antioxidant activity of polysaccharides. Oxidative Medicine and Cellular Longevity, 2016(5692852):1-13.
Widyawaruyanti, A., Devi, A. P., Fatria, N., Tumewu, L., Tantular, I. S., & Hafid, A. F. (2014). In vitro antimalarial activity screening of several Indonesian plants using Hrp2 assay. International Journal of Pharmacy and Pharmaceutical Science, 6(6):125-128.
World Health Organization (WHO). (2020). World malaria report 2020: 20 years of global progress and challenges. Retrieved from www.who.int.
Wulandari, D. A., Setyaningsih, I., & Asih, P. B. S. (2016). Extraction and in vitro antimalarial activity phycocyanin from Spirulina platensis. Jurnal Pengolahan Hasil Perikanan Indonesia, 19(1):17-25.
Zakiyah, U., Mulyanto, Suwanti, L. T., Koerniawan, M. D., Suyono, E. A., Budiman, A., & Siregar, U. J. (2020). Diversity and distribution of microalgae in coastal areas of East Java, Indonesia. Biodiversitas, 21:1149-1159.
Zeidan, A. A., Poulsen, V. K., Janzen, T., Buldo. P., Derkx, P. M. F., í˜regaard, G., & Neves, A. R. (2017). Polysaccharide production by lactic acid bacteria: from genes to industrial applications. FEMS Microbiology Reviews, 41(Supp_1):S168–S200.
Zhu, X., Pan, Y., Zheng, L., Cui, L., & Coa, Y. (2012). Polysaccharides from the Chinese medicinal herb Achyranthes bidentata enhance anti-malarial immunity during Plasmodium yoelii 17XL infection in mice. Malaria Journal, 11:49.