Date Log
Copyright (c) 2024 Jurnal Ilmiah Perikanan dan Kelautan
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
1. Copyright of the article is transferred to the journal, by the knowledge of the author, whilst the moral right of the publication belongs to the author.
2. The legal formal aspect of journal publication accessibility refers to Creative Commons Atribusi-Non Commercial-Share alike (CC BY-NC-SA), (https://creativecommons.org/licenses/by-nc-sa/4.0/)
3. The articles published in the journal are open access and can be used for non-commercial purposes. Other than the aims mentioned above, the editorial board is not responsible for copyright violation
The manuscript authentic and copyright statement submission can be downloaded ON THIS FORM.
Characteristic of Different Chitosan Types on κ-Carrageenan Polyelectrolyte Complex (PEC) Bioplastics as Food Packaging
Corresponding Author(s) : Mochammad Amin Alamsjah
Jurnal Ilmiah Perikanan dan Kelautan, 2024: IN PRESS ISSUE (JUST ACCEPTED MANUSCRIPT, 2024)
Abstract
Graphical Abstract
Highlight Research
The author mentioned 4 highlights from their results research
- This study investigates the impact of incorporating chitosan from different sources (shrimp, crab, and fish scales) with varying molecular weights on the mechanical characteristics of bioplastics used for food packaging.
- The present study aims to optimize the volume ratio of κ-carrageenan and chitosan to form stable polyelectrolyte complexes (PECs) for bioplastic production.
- This study evaluates the quality of tilapia fillets wrapped with κ-carrageenan and chitosan PEC bioplastics after 24 h storage.
- The present study investigates the reaction mechanism involved in the formation of polyelectrolyte complexes between κ-carrageenan and chitosan for bioplastic production.
Abstract
Bioplastic represents an eco-friendly alternative to synthetic plastic which can be derived from natural polysaccharides like carrageenan. κ-carrageenan is noted for its gel-forming properties making it a common raw material for bioplastics. Mechanical properties values of κ-carrageenan bioplastics are usually below standard. The addition of materials such as chitosan can enhance those properties. Chitosan-carrageenan can form polyelectrolyte complexe (PEC) through electrostatic interactions without toxic crosslinking agents. Polymer’s molecular weight is a crucial factor influencing PEC formation. Chitosan's molecular weight varies based on the raw material and extraction process. This study aims to identify the most suitable type of chitosan for food packaging bioplastics using polyelectrolyte complex (PEC) method. Three types of commercial chitosan with different molecular weights were evaluated (shrimp, crab, and fish scale chitosan). Japanese Industrial Standards (JIS) were used for characterization assessment of bioplastics such as thickness, tensile strength, water resistance, water vapor transmission, and biodegradation rate as well as additional tests including Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) analysis, and Total Plate Count (TPC) on fish fillets.The findings indicated that crab chitosan-κ carrageenan PEC bioplastic exhibited optimal results with a thickness of 0.178 mm, tensile strength of 18.053 MPa, elongation at break at 211.73%, water resistance of 63.94%, Water Vapor Transmission (WVT) of 0,001456 g/m2/day, biodegradation rate of 3.358% over 7 days, and the lowest TPC in fish fillets after 24 h, increasing from 4.39 log CFU/g to 7.45 log CFU/g. Molecular weight of chitosan was shown to significantly influence the PEC bioplastics characteristics.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Abang, S., Wong, F., Sarbatly, R., Sariau, J., Baini, R., & Besar, N. A. (2023). Bioplastic classifications and innovations in antibacterial, antifungal, and antioxidant applications. Journal of Bioresources and Bioproducts, 8(4):361-387.
- Adam, F., Othman, N. A., Yasin, N. H. M., Cheng, C. K., & Azman, N. A. M. (2022). Evaluation of reinforced and green bioplastic from carrageenan seaweed with nanocellulose. Fibers and Polymers, 23(10):2885-2896.
- Adhikari, D., Mukai, M., Kubota, K., Kai, T., Kaneko, N., Araki, K. S., & Kubo, M. (2016). Degradation of bioplastics in soil and their degradation effects on environmental microorganisms. Journal of Agricultural Chemistry and Environment, 5(1):23-34.
- Al-Zebari, N., Best, S. M., & Cameron, R. E. (2019). Effects of reaction pH on self-crosslinked chitosan-carrageenan polyelectrolyte complex gels and sponges. Journal of Physics: Materials, 2(015003):1-13.
- Alemu, D., Getachew, E., & Mondal, A. K. (2023). Study on the physicochemical properties of chitosan and their applications in the biomedical sector. International Journal of Polymer Science, 2023(1):1-13.
- Andonegi, M., Las Heras, K., Santos-Vizcaíno, E., Igartua, M., Hernandez, R. M., de la Caba, K., & Guerrero, P. (2020). Structure-properties relationship of chitosan/collagen films with potential for biomedical applications. Carbohydrate Polymers, 237(11):1-8.
- Carvalho, S. G., Dos Santos, A. M., Silvestre, A. L. P., Meneguin, A. B., Ferreira, L. M. B., Chorilli, M., & Gremião, M. P. D. (2021). New insights into physicochemical aspects involved in the formation of polyelectrolyte complexes based on chitosan and dextran sulfate. Carbohydrate Polymers, 271(21):1-9.
- Chen, Y., Liu, Y., Dong, Q., Xu, C., Deng, S., Kang, Y., Fan, M., & Li, L. (2023). Application of functionalized chitosan in food: A review. International Journal of Biological Macromolecules, 235(12):1-14.
- Dai, Y. Y., Yuan, Y. M., Yuan, Y., Zhou, Z., & Zhang, H. Y. (2020). Competitiveness of Chinese and Indonesian tilapia exports in the US market. Aquaculture International, 28(1):791-804.
- Favian, E., & Nugraheni, P. S. (2023). Effect of carrageenan addition on the characteristic of chitosan-based bioplastic. IOP Conference Series: Earth and Environmental Science, 1289(012039):1-16.
- Fransiska, D., Darmawan, M., Sinurat, E., Sedayu, B. B., Wardhana, Y. W., Herdiana, Y., & Setiana, G. P. (2021). Characteristics of oil in water (o/w) type lotions incorporated with κ/iota carrageenan. IOP Conference Series: Earth and Environmental Science, 715(012050):1-12.
- Ghanbari, A., Tabarsa, T., Ashori, A., Shakeri, A., & Mashkour, M. (2018). Thermoplastic starch foamed composites reinforced with cellulose nanofibers: Thermal and mechanical properties. Carbohydrate Polymers, 197(19):305-311.
- Gomes, L. C., Faria, S. I., Valcarcel, J., Vázquez, J. A., Cerqueira, M. A., Pastrana, L., Bourbon, A. I., & Mergulhão, F. J. (2021). The effect of molecular weight on the antimicrobial activity of chitosan from Loligo opalescens for food packaging applications. Marine Drugs, 19(7):1-19.
- Gonçalves, C., Ferreira, N., & Lourenço, L. (2021). Production of low molecular weight chitosan and chitooligosaccharides (COS): A review. Polymers, 13(15):1-23.
- Hubbe, M. A. (2021). Contributions of polyelectrolyte complexes and ionic bonding to performance of barrier films for packaging: A review. BioResources, 16(2):1-62.
- Hosseini-Ashtiani, N., Tadjarodi, A., & Zare-Dorabei, R. (2021). Low molecular weight chitosan-cyanocobalamin nanoparticles for controlled delivery of ciprofloxacin: Preparation and evaluation. International Journal of Biological Macromolecules, 176(15):459-467.
- Ismillayli, N., Andayani, I. G. A. S., Honiar, R., Mariana, B., Sanjaya, R. K., & Hermanto, D. (2020) Polyelectrolyte complex (PEC) film based on chitosan as potential edible films and their antibacterial activity test. IOP Conference Series: Materials Science and Engineering, 959(012009):1-7.
- Jaya, A. A., Ratnasari, R., & Hamal, R. (2023). Application of seaweed (Kappaphycus Alvarezii) cultivation science and technology using tissue culture seeds in Pokdakan UKM "Gusung Batangeng" Pangkep Regency. [in English]. Jatirenov: Jurnal Aplikasi Teknologi Rekayasa dan Inovasi, 2(2):77-86.
- Kołodziejska, M., Jankowska, K., Klak, M., & Wszoła, M. (2021). Chitosan as an underrated polymer in modern tissue engineering. Nanomaterials, 11(11):3019-3063.
- Li, J., Van Ewijk, G., Van Dijken, D. J., Van Der Gucht, J., & De Vos, W. M. (2021). Single-step application of polyelectrolyte complex films as oxygen barrier coatings. ACS Applied Materials & Interfaces, 13(18):21844-21853.
- Lim, C., Yusoff, S., Ng, C. G., Lim, P. E., & Ching, Y. C. (2021). Bioplastic made from seaweed polysaccharides with green production methods. Journal of Environmental Chemical Engineering, 9(5):1-9.
- Liu, Y., Yuan, Y., Duan, S., Li, C., Hu, B., Liu, A., Wu, D., Cui, H., & Wu, W. (2020). Preparation and characterization of chitosan films with three kinds of molecular weight for food packaging. International Journal of Biological Macromolecules, 155(14):249-259.
- Maliki, S., Sharma, G., Kumar, A., Moral-Zamorano, M., Moradi, O., Baselga, J., Stadler, F. J., & García-Peñas, A. (2022). Chitosan as a tool for sustainable development: A mini review. Polymers, 14(7):1-27.
- Meka, V. S., Sing, M. K., Pichika, M. R., Nali, S. R., Kolapalli, V. R., & Kesharwani, P. (2017). A comprehensive review on polyelectrolyte complexes. Drug Discovery Today, 22(11):1697-1706.
- Meng, S., Liu, Y., Yeo, J., Ting, J. M., & Tirrell, M. V. (2020). Effect of mixed solvents on polyelectrolyte complexes with salt. Colloid and Polymer Science, 298(7):887-894.
- Mokhtari, H., Tavakoli, S., Safarpour, F., Kharaziha, M., Bakhsheshi-Rad, H. R., Ramakrishna, S., & Berto, F. (2021). Recent advances in chemically-modified and hybrid carrageenan-based platforms for drug delivery, wound healing, and tissue engineering. Polymers, 13(11):1744-1765.
- Ncube, L. K., Ude, A. U., Ogunmuyiwa, E. N., Zulkifli, R., & Beas, I. N. (2021). An overview of plastic waste generation and management in food packaging industries. Recycling, 6(1):1-25.
- Neitzel, A. E., Fang, Y. N., Yu, B., Rumyantsev, A. M., De Pablo, J. J., & Tirrell, M. V. (2021). Polyelectrolyte complex coacervation across a broad range of charge densities. Macromolecules, 54(14):6878-6890.
- Putra, D. M. D. P., Harsojuwono, B. A., & Hartiati, A. (2019). Study of gelatinization temperature and ph in the preparation of bioplastics from cassava peel starch. [in English]. Jurnal Rekayasa dan Manajemen Agroindustri, 7(3):441-449.
- Qasim, U., Osman, A. I., Al-Muhtaseb, A. A. H., Farrell, C., Al-Abri, M., Ali, M., Vo, D. N., Jamil, F., & Rooney, D. W. (2021). Renewable cellulosic nanocomposites for food packaging to avoid fossil fuel plastic pollution: A review. Environmental Chemistry Letters, 19:613-641.
- Qureshi, M. A. U. R., Arshad, N., Rasool, A., Islam, A., Rizwan, M., Haseeb, M., Rasheed, T. & Bilal, M. (2024). Chitosan and carrageenan‐based biocompatible hydrogel platforms for cosmeceutical, drug delivery, and biomedical applications. Starch‐Stärke, 76(2):52-149.
- Rahmadhia, S. N., Saputra, Y. A., Juwitaningtyas, T., & Rahayu, W. M. (2022). Intelligent packaging as a pH-indicator based on cassava starch with addition of purple sweet potato extract (Ipomoea batatas L.). Journal of Functional Food and Nutraceutical, 4(1):37-47.
- Roy, S., Chaudhuri, S., Mukherjee, P., & Nandi, S. K. (2024). Biomedical applications of chitin, chitosan, their derivatives, and processing by-products from fish waste. In S. Maqsood, S. Benjakul, M. N. Naseer, & A. A, Zaidi, Fish waste to valuable products. (pp. 279-300). Singapore: Springer Nature Singapore.
- Sapuła, P., Bialik-Wąs, K., & Malarz, K. (2023). Are natural compounds a promising alternative to synthetic cross-linking agents in the preparation of hydrogels?. Pharmaceutics, 15(1):1-35.
- Sariyer, S., Duranoğlu, D., Doğan, Ö., & Küçük, İ. (2020). pH-responsive double network alginate/κ-carrageenan hydrogel beads for controlled protein release: Effect of pH and crosslinking agent. Journal of Drug Delivery Science and Technology, 56(2):1-7.
- Sedayu, B. B., Cran, M. J., & Bigger, S. W. (2019). A review of property enhancement techniques for carrageenan-based films and coatings. Carbohydrate polymers, 216(14):287-302.
- Shapi’i, R. A., Othman, S. H., Basha, R. K., & Naim, M. N. (2022). Mechanical, thermal, and barrier properties of starch films incorporated with chitosan nanoparticles. Nanotechnology Reviews, 11(1):1464-1477.
- Sims, R. A., Noguchi, H., Harmer, S. L., Quinton, J. S., & Uosaki, K. (2021). Probing molecular mechanisms during the oscillatory adsorption of propyl chain functionalized organosilane films with sum frequency generation spectroscopy. The Journal of Physical Chemistry B, 125(17):4383-4392.
- Sudhakar, M. P., Magesh Peter, D., & Dharani, G. (2021). Studies on the development and characterization of bioplastic film from the red seaweed (Kappaphycus alvarezii). Environmental Science and Pollution Research, 28(26):33899-33913.
- Sunardi, S., Trianda, N. F., & Irawati, U. (2020). Effect of nanocellulose from nipah fronds as filler on the properties of polyvinyl alcohol bioplastics. [in English]. Justek: Jurnal Sains dan Teknologi, 3(2):69-76.
- Suryani, S., Chaerunisaa, A. Y., Joni, I. M., Ruslin, R., Ramadhan, L. O. A. N., Wardhana, Y. W., & Sabarwati, S. H. (2022). Production of low molecular weight chitosan using a combination of weak acid and ultrasonication methods. Polymers, 14(16):3417-3432.
- Tan, S. X., Ong, H. C., Andriyana, A., Lim, S., Pang, Y. L., Kusumo, F., & Ngoh, G. C. (2022). Characterization and parametric study on mechanical properties enhancement in biodegradable chitosan-reinforced starch-based bioplastic film. Polymers, 14(2):278-299.
- Ushimaru, K., Morita, T., Watanabe, R., & Fukuoka, T. (2021). Biobased and mechanically stiff lignosulfonate/cationic-polyelectrolyte/sugar complexes with coexisting ionic and covalent crosslinks. Polymer Journal, 53(9):1037-1045.
- Wang, J., Euring, M., Ostendorf, K., & Zhang, K. (2022). Biobased materials for food packaging. Journal of Bioresources and Bioproducts, 7(1):1-13.
- Xue, W., Zhu, J., Sun, P., Yang, F., Wu, H., & Li, W. (2023). Permeability of biodegradable film comprising biopolymers derived from marine origin for food packaging application: A review. Trends in Food Science & Technology, 136(6):295-307.
- Zhang, L., Gao, C., Wang, Z., Xie, F., Chen, Y., Meng, L., & Tang, X. (2023). Structure and properties of thermomechanically processed chitosan-based biomimetic composite materials: Effect of chitosan molecular weight. ACS Sustainable Chemistry & Engineering, 11(2):708-717.
References
Abang, S., Wong, F., Sarbatly, R., Sariau, J., Baini, R., & Besar, N. A. (2023). Bioplastic classifications and innovations in antibacterial, antifungal, and antioxidant applications. Journal of Bioresources and Bioproducts, 8(4):361-387.
Adam, F., Othman, N. A., Yasin, N. H. M., Cheng, C. K., & Azman, N. A. M. (2022). Evaluation of reinforced and green bioplastic from carrageenan seaweed with nanocellulose. Fibers and Polymers, 23(10):2885-2896.
Adhikari, D., Mukai, M., Kubota, K., Kai, T., Kaneko, N., Araki, K. S., & Kubo, M. (2016). Degradation of bioplastics in soil and their degradation effects on environmental microorganisms. Journal of Agricultural Chemistry and Environment, 5(1):23-34.
Al-Zebari, N., Best, S. M., & Cameron, R. E. (2019). Effects of reaction pH on self-crosslinked chitosan-carrageenan polyelectrolyte complex gels and sponges. Journal of Physics: Materials, 2(015003):1-13.
Alemu, D., Getachew, E., & Mondal, A. K. (2023). Study on the physicochemical properties of chitosan and their applications in the biomedical sector. International Journal of Polymer Science, 2023(1):1-13.
Andonegi, M., Las Heras, K., Santos-Vizcaíno, E., Igartua, M., Hernandez, R. M., de la Caba, K., & Guerrero, P. (2020). Structure-properties relationship of chitosan/collagen films with potential for biomedical applications. Carbohydrate Polymers, 237(11):1-8.
Carvalho, S. G., Dos Santos, A. M., Silvestre, A. L. P., Meneguin, A. B., Ferreira, L. M. B., Chorilli, M., & Gremião, M. P. D. (2021). New insights into physicochemical aspects involved in the formation of polyelectrolyte complexes based on chitosan and dextran sulfate. Carbohydrate Polymers, 271(21):1-9.
Chen, Y., Liu, Y., Dong, Q., Xu, C., Deng, S., Kang, Y., Fan, M., & Li, L. (2023). Application of functionalized chitosan in food: A review. International Journal of Biological Macromolecules, 235(12):1-14.
Dai, Y. Y., Yuan, Y. M., Yuan, Y., Zhou, Z., & Zhang, H. Y. (2020). Competitiveness of Chinese and Indonesian tilapia exports in the US market. Aquaculture International, 28(1):791-804.
Favian, E., & Nugraheni, P. S. (2023). Effect of carrageenan addition on the characteristic of chitosan-based bioplastic. IOP Conference Series: Earth and Environmental Science, 1289(012039):1-16.
Fransiska, D., Darmawan, M., Sinurat, E., Sedayu, B. B., Wardhana, Y. W., Herdiana, Y., & Setiana, G. P. (2021). Characteristics of oil in water (o/w) type lotions incorporated with κ/iota carrageenan. IOP Conference Series: Earth and Environmental Science, 715(012050):1-12.
Ghanbari, A., Tabarsa, T., Ashori, A., Shakeri, A., & Mashkour, M. (2018). Thermoplastic starch foamed composites reinforced with cellulose nanofibers: Thermal and mechanical properties. Carbohydrate Polymers, 197(19):305-311.
Gomes, L. C., Faria, S. I., Valcarcel, J., Vázquez, J. A., Cerqueira, M. A., Pastrana, L., Bourbon, A. I., & Mergulhão, F. J. (2021). The effect of molecular weight on the antimicrobial activity of chitosan from Loligo opalescens for food packaging applications. Marine Drugs, 19(7):1-19.
Gonçalves, C., Ferreira, N., & Lourenço, L. (2021). Production of low molecular weight chitosan and chitooligosaccharides (COS): A review. Polymers, 13(15):1-23.
Hubbe, M. A. (2021). Contributions of polyelectrolyte complexes and ionic bonding to performance of barrier films for packaging: A review. BioResources, 16(2):1-62.
Hosseini-Ashtiani, N., Tadjarodi, A., & Zare-Dorabei, R. (2021). Low molecular weight chitosan-cyanocobalamin nanoparticles for controlled delivery of ciprofloxacin: Preparation and evaluation. International Journal of Biological Macromolecules, 176(15):459-467.
Ismillayli, N., Andayani, I. G. A. S., Honiar, R., Mariana, B., Sanjaya, R. K., & Hermanto, D. (2020) Polyelectrolyte complex (PEC) film based on chitosan as potential edible films and their antibacterial activity test. IOP Conference Series: Materials Science and Engineering, 959(012009):1-7.
Jaya, A. A., Ratnasari, R., & Hamal, R. (2023). Application of seaweed (Kappaphycus Alvarezii) cultivation science and technology using tissue culture seeds in Pokdakan UKM "Gusung Batangeng" Pangkep Regency. [in English]. Jatirenov: Jurnal Aplikasi Teknologi Rekayasa dan Inovasi, 2(2):77-86.
Kołodziejska, M., Jankowska, K., Klak, M., & Wszoła, M. (2021). Chitosan as an underrated polymer in modern tissue engineering. Nanomaterials, 11(11):3019-3063.
Li, J., Van Ewijk, G., Van Dijken, D. J., Van Der Gucht, J., & De Vos, W. M. (2021). Single-step application of polyelectrolyte complex films as oxygen barrier coatings. ACS Applied Materials & Interfaces, 13(18):21844-21853.
Lim, C., Yusoff, S., Ng, C. G., Lim, P. E., & Ching, Y. C. (2021). Bioplastic made from seaweed polysaccharides with green production methods. Journal of Environmental Chemical Engineering, 9(5):1-9.
Liu, Y., Yuan, Y., Duan, S., Li, C., Hu, B., Liu, A., Wu, D., Cui, H., & Wu, W. (2020). Preparation and characterization of chitosan films with three kinds of molecular weight for food packaging. International Journal of Biological Macromolecules, 155(14):249-259.
Maliki, S., Sharma, G., Kumar, A., Moral-Zamorano, M., Moradi, O., Baselga, J., Stadler, F. J., & García-Peñas, A. (2022). Chitosan as a tool for sustainable development: A mini review. Polymers, 14(7):1-27.
Meka, V. S., Sing, M. K., Pichika, M. R., Nali, S. R., Kolapalli, V. R., & Kesharwani, P. (2017). A comprehensive review on polyelectrolyte complexes. Drug Discovery Today, 22(11):1697-1706.
Meng, S., Liu, Y., Yeo, J., Ting, J. M., & Tirrell, M. V. (2020). Effect of mixed solvents on polyelectrolyte complexes with salt. Colloid and Polymer Science, 298(7):887-894.
Mokhtari, H., Tavakoli, S., Safarpour, F., Kharaziha, M., Bakhsheshi-Rad, H. R., Ramakrishna, S., & Berto, F. (2021). Recent advances in chemically-modified and hybrid carrageenan-based platforms for drug delivery, wound healing, and tissue engineering. Polymers, 13(11):1744-1765.
Ncube, L. K., Ude, A. U., Ogunmuyiwa, E. N., Zulkifli, R., & Beas, I. N. (2021). An overview of plastic waste generation and management in food packaging industries. Recycling, 6(1):1-25.
Neitzel, A. E., Fang, Y. N., Yu, B., Rumyantsev, A. M., De Pablo, J. J., & Tirrell, M. V. (2021). Polyelectrolyte complex coacervation across a broad range of charge densities. Macromolecules, 54(14):6878-6890.
Putra, D. M. D. P., Harsojuwono, B. A., & Hartiati, A. (2019). Study of gelatinization temperature and ph in the preparation of bioplastics from cassava peel starch. [in English]. Jurnal Rekayasa dan Manajemen Agroindustri, 7(3):441-449.
Qasim, U., Osman, A. I., Al-Muhtaseb, A. A. H., Farrell, C., Al-Abri, M., Ali, M., Vo, D. N., Jamil, F., & Rooney, D. W. (2021). Renewable cellulosic nanocomposites for food packaging to avoid fossil fuel plastic pollution: A review. Environmental Chemistry Letters, 19:613-641.
Qureshi, M. A. U. R., Arshad, N., Rasool, A., Islam, A., Rizwan, M., Haseeb, M., Rasheed, T. & Bilal, M. (2024). Chitosan and carrageenan‐based biocompatible hydrogel platforms for cosmeceutical, drug delivery, and biomedical applications. Starch‐Stärke, 76(2):52-149.
Rahmadhia, S. N., Saputra, Y. A., Juwitaningtyas, T., & Rahayu, W. M. (2022). Intelligent packaging as a pH-indicator based on cassava starch with addition of purple sweet potato extract (Ipomoea batatas L.). Journal of Functional Food and Nutraceutical, 4(1):37-47.
Roy, S., Chaudhuri, S., Mukherjee, P., & Nandi, S. K. (2024). Biomedical applications of chitin, chitosan, their derivatives, and processing by-products from fish waste. In S. Maqsood, S. Benjakul, M. N. Naseer, & A. A, Zaidi, Fish waste to valuable products. (pp. 279-300). Singapore: Springer Nature Singapore.
Sapuła, P., Bialik-Wąs, K., & Malarz, K. (2023). Are natural compounds a promising alternative to synthetic cross-linking agents in the preparation of hydrogels?. Pharmaceutics, 15(1):1-35.
Sariyer, S., Duranoğlu, D., Doğan, Ö., & Küçük, İ. (2020). pH-responsive double network alginate/κ-carrageenan hydrogel beads for controlled protein release: Effect of pH and crosslinking agent. Journal of Drug Delivery Science and Technology, 56(2):1-7.
Sedayu, B. B., Cran, M. J., & Bigger, S. W. (2019). A review of property enhancement techniques for carrageenan-based films and coatings. Carbohydrate polymers, 216(14):287-302.
Shapi’i, R. A., Othman, S. H., Basha, R. K., & Naim, M. N. (2022). Mechanical, thermal, and barrier properties of starch films incorporated with chitosan nanoparticles. Nanotechnology Reviews, 11(1):1464-1477.
Sims, R. A., Noguchi, H., Harmer, S. L., Quinton, J. S., & Uosaki, K. (2021). Probing molecular mechanisms during the oscillatory adsorption of propyl chain functionalized organosilane films with sum frequency generation spectroscopy. The Journal of Physical Chemistry B, 125(17):4383-4392.
Sudhakar, M. P., Magesh Peter, D., & Dharani, G. (2021). Studies on the development and characterization of bioplastic film from the red seaweed (Kappaphycus alvarezii). Environmental Science and Pollution Research, 28(26):33899-33913.
Sunardi, S., Trianda, N. F., & Irawati, U. (2020). Effect of nanocellulose from nipah fronds as filler on the properties of polyvinyl alcohol bioplastics. [in English]. Justek: Jurnal Sains dan Teknologi, 3(2):69-76.
Suryani, S., Chaerunisaa, A. Y., Joni, I. M., Ruslin, R., Ramadhan, L. O. A. N., Wardhana, Y. W., & Sabarwati, S. H. (2022). Production of low molecular weight chitosan using a combination of weak acid and ultrasonication methods. Polymers, 14(16):3417-3432.
Tan, S. X., Ong, H. C., Andriyana, A., Lim, S., Pang, Y. L., Kusumo, F., & Ngoh, G. C. (2022). Characterization and parametric study on mechanical properties enhancement in biodegradable chitosan-reinforced starch-based bioplastic film. Polymers, 14(2):278-299.
Ushimaru, K., Morita, T., Watanabe, R., & Fukuoka, T. (2021). Biobased and mechanically stiff lignosulfonate/cationic-polyelectrolyte/sugar complexes with coexisting ionic and covalent crosslinks. Polymer Journal, 53(9):1037-1045.
Wang, J., Euring, M., Ostendorf, K., & Zhang, K. (2022). Biobased materials for food packaging. Journal of Bioresources and Bioproducts, 7(1):1-13.
Xue, W., Zhu, J., Sun, P., Yang, F., Wu, H., & Li, W. (2023). Permeability of biodegradable film comprising biopolymers derived from marine origin for food packaging application: A review. Trends in Food Science & Technology, 136(6):295-307.
Zhang, L., Gao, C., Wang, Z., Xie, F., Chen, Y., Meng, L., & Tang, X. (2023). Structure and properties of thermomechanically processed chitosan-based biomimetic composite materials: Effect of chitosan molecular weight. ACS Sustainable Chemistry & Engineering, 11(2):708-717.